

THE PRINCIPLES OF CELESTIAL NAVGATION

Adel Mostafa

ltanin .

ee?

THE PRINCIPLES OF CELESTIAL NAVIGATION

Table of contents

PART ONE: DESCRIPTIVE ASTRONOMY

The Concept of the Celestial Sphere	1
Systems of Coordinates on the Celestial Sphere.	12
Apparent Diurnal Motion of Celestial Bodies	19
Apparent Annual Motion of Sun.	25
Apparent Motion of Moon.	33
Apparent Motion of Planets.	41

PART TWO: TOOLS USED IN CELESTIAL NAVIGATION

The Concept of Time and its measurement.	67
Nautical Almanac Tables and its use.	96
The Theory and Construction of the Marine Sextant.	106
Sextant altitude Corrections.	117
Solving the Spherical Triangle PZX	128
Twilight Phenomena & Star Sights.	136

PART THREE: APPLIED CELESTIAL NAVIGATION

Theory of the Astronomical P.L.	146
Theory of Polaris.	162
Preparation for star sights.	167
Solving simultaneous sights.	176
Theory of solving Long- Run sights.	185
Preparation for Noon sight.	191
Compass error.	197

The Concept of the Celestial Sphere

The Celestial Sphere

It is assumed that all heavenly bodies are moving on the inner surface of an imaginary huge sphere, centered at the earth's center and of radius infinity. This sphere is known as the Celestial Sphere.

Celestial Poles

The axis of rotation of the earth when extended to infinity from each side, will meet the celestial sphere in two points; the north celestial pole (P) and south celestial pole (p`).

Note:

- The extension of the Earth's axis of rotation is the *Axis of Rotation* of the celestial sphere.
- The Celestial Sphere appears to rotate from <u>East</u> <u>to West</u> as a reverse rotation of the Earth's rotation from <u>West to East</u>. This is the reason of why the Sun rises and sets daily.

The Equinoctial or Celestial Equator

The great circle on the celestial sphere which is perpendicular to the axis of rotation is known as the Equinoctial.

Note:

The Equinoctial divides the celestial sphere into *Northern and Southern* hemispheres

Celestial Meridians

The semi-great circle on the celestial sphere which joins the poles are known as the Celestial Meridians or hour circles.

Note: Celestial meridians are perpendicular to the Equinoctial

Parallels of Declinations

The small circles on the celestial sphere which are parallel to the Equinoctial are known as the parallels of declinations or diurnal circles.

Zenith and Nadir points

The radius of the earth when extended to infinity passing through the observer, meets the celestial sphere at two points: the most upper point Zenith (Z) and the most lower point Nadir (Z).

Note:

According to definition, every observer on the earth's surface has its own zenith point (and of course nadir point).

Horizon circle

The great circle on the celestial sphere which is perpendicular to the line joining the Zenith and Nadir points is known as the horizon circle.

Note:

- The horizon circle divides the celestial sphere into *Visible and Invisible* hemispheres.
- Before Sunrise and after Sunset, Sun is not seen, because it is in the invisible hemisphere.

Vertical circles

The Semi-great circles on the celestial sphere which joins the zenith and nadir points are known as the Vertical Circles.

Note:

The vertical circles are perpendicular to the horizon circle.

Parallels of Altitude

The small circles on the celestial sphere which are parallel to the horizon circle are known as parallels of altitude.

The Observer's Meridian

The great circle on the celestial sphere which passes through the Poles, Zenith and Nadir points is known as the Observer's Meridian

Note:

The Observer's Meridian is divided into:

- Upper Observer's Meridian; passes through the Poles and Zenith point, i.e. (PZP').
- Lower Observer's Meridian; passes through the Poles and Nadir point, i.e. (PZ'P').

The principle vertical circle

The great circle on the celestial sphere which passes through zenith, nadir and the celestial poles is known as the Principle Vertical Circle.

Note:

The principle vertical circle is the same circle defined before as the observer's meridian.

The Cardinal points

The principle vertical circle intersects the horizon in two points, the nearest point to the north celestial pole P is the North point (N) and the nearest point to the south celestial pole P' is the South point (S). East point (E) and west point (W) are put on the horizon circle according to the well-known arrangement.

Note:

The principle vertical circle or the observer's meridian divides the celestial sphere into *Eastern and Western* hemi-spheres.

The Prime Vertical Circle

The great circle on the celestial sphere that passes through zenith, nadir, East, and West points is known as the Prime Vertical Circle.

Note :

- The principle vertical circle.
- The prime vertical circle.
- The horizon circle.

Are three perpendicular great circles.

Amplitude

It is the arc on the horizon; from the East point E or the west point W to the rising point or setting point of the celestial body respectively.

It is measured from 00° to 90° . It is calculated by the following relation:

Sin Amp. = Sin Dec. Sec Lat.

Elevation of the Pole:

The elevation of the Pole above the horizon circle of a certain observer; is *equal* to the Latitude of that observer.

Thus, for an observer in latitude 40° N, the north pole will be elevated 40° above the north point N, and for an observer in Latitude 50° S, the south pole will be elevated 50° above the south point S.

Ecliptic Circle:

It is the apparent annual path of the Sun among the stars. It is a great circle inclined to the Equinoctial by about 23°.5; and intersects the Equinoctial in two points; Vernal Equinox (γ) and Autumnal Equinox. This will be discussed in details later.

Horizon plane projection

Celestial Sphere Projected on the Horizon Plane has two cases:

A. Celestial Sphere Projected on the Horizon Plane for a *North Latitude* Observer:

In the figure:

NESW; is the Horizon Circle.

P is the North Pole

Z is the Zenith point

NP is the visible part of the Lower observer's meridian.

PZQS is the visible part of the Upper observer's meridian.

EZW is the half of the Prime vertical circle seen above the horizon .

EQW is the half of the Equinoctial seen above the horizon .

B. Celestial Sphere Projected on the Horizon Plane for a *South Latitude* Observer:

In the figure :

NESW; is the Horizon Circle.

- P' is the South Pole
- Z is the Zenith point
- SP' is the visible part of the Lower observer's meridian.

P'ZQN is the visible part of the Upper observer's meridian

EZW is the half of the Prime vertical circle seen above the horizon.

EQW is the half of the Equinoctial seen above the horizon.

Observer's Meridian Plane Projection

Celestial Sphere Projected on the Observer's Meridian has four cases:

A. Eastern hemisphere for North latitude observer

B. Eastern hemisphere for South latitude observer

C. Western hemisphere for North latitude observer

D. Western hemisphere for South latitude observer

Equinoctial Plane Projection

Celestial Sphere Projected on the Equinoctial plane has two cases:

A. As seen from the North Pole.

B. As seen from the South Pole.

Systems of Coordinates

Systems of coordinates on the celestial sphere

In geography and navigation; the coordinates of various points of earth's surface are found from their relationship to two mutually perpendicular great circles. The *Equator* and the *Greenwich meridian*.

The same method is employed for developing coordinate systems of the celestial bodies on the celestial sphere. Systems are chosen of two mutually perpendicular great circles that occupy very definite positions on the celestial sphere

We shall define three systems of coordinates used in Celestial Navigation;

- A. The Horizon system of coordinates
- B. The 1st Equatorial system of coordinates
- C. The 2nd Equatorial system of coordinates

A. The Horizon system of coordinates:

The Mutual perpendicular great circles used in this system are:

- Horizon circle.
- Principle vertical circle.

And the related elements of coordinates are:

- Altitude or (zenith distance).
- Azimuth.

Altitude of a heavenly body:

It is an arc on the vertical circle of the celestial body; from the horizon circle to the body; and measured from 0° to 90° .

Note: Altitude is symbolic (h).

Meridian Altitude:

At the instance of meridian passage, the altitude of the heavenly body is said to be meridian altitude.

Note: Meridian altitude is symbolic as (H) and denoted N or S according to the nearest point of the horizon.

Zenith Distance of a heavenly body:

It is an arc on the vertical circle of the heavenly body; from the zenith point to the body; and measured from 0° to 90° .

Note: Zenith distance is symbolic (z).

Meridian Zenith Distance:

At the instance of meridian passage, the zenith distance of the heavenly body is said to be meridian zenith distance.

Note: Meridian zenith distance is symbolic (Z).

Relation between Altitude and Zenith Distance:

Regarding the figure; we conclude the following:

X`X is the altitude of the body X

ZX is the zenith distance of the body X Since: $XX + ZX = 90^{\circ}$ Therefore:

Azimuth:

It is the arc on the horizon circle (or the angle at zenith point) from the principle vertical circle to the vertical circle of the heavenly body, and measured in 3 ways:

Quadratic measuring:

Where the Azimuth is reckoned from 0° to 90° starting from N or S point in East or West direction.

Note: Az. in figure \approx S 49° W

Semi-circular measuring:

Where the Azimuth is reckoned from 0° to 180° starting from N or S point (according to the latitude of the observer) in East or West direction.

Note: Az. in figure $\approx 151^{\circ}$ NW

Circular measuring:

Where the Azimuth is reckoned from 0° to 360° starting from N point in Eastward direction and written in 3 figures notation. This is known as the True Bearing.(T. Bg.).

Note: Az. in figure $\approx 229^{\circ}$ Azimuth is symbolic (Az.).

The 1st Equatorial system of coordinates:

Mutual perpendicular great circles are:

- Equinoctial circle.
- The observer's meridian.
- Elements of coordinates are:
 - Declination or (Polar distance).
 - Local hour angle.

N Q Q Z'

Declination of a heavenly body:

It is an arc on the meridian of a heavenly body; from the equinoctial to the body. It is measured from 0° to $90^{\circ} N$ or S and it is symbolic (δ).

Note:

Declination of a heavenly body must be denoted N or S in accordance to the hemisphere in which it is situated.

Polar Distance of a heavenly body:

It is an arc on the meridian of a heavenly body; from the <u>elevated pole</u> to the body. It is measured from 0° to 180° and it is symbolic (Δ).

Note: The elevated pole is:

- N pole (P) for North observer.
- S pole (P') for South observer

Relation between Polar distance and Declination of a heavenly body:

Polar distances measured from the elevated pole which is similar name to latitude. The polar distance is related to the declination as follows:

Polar Dist. = $90 \pm Dec$.

Note:

- Sign (+) is used if Latitude and Declination are of different names.
- Sign (--) is used if Latitude and Declination are of same names.

It is an arc on the equinoctial or an angle at the pole; starting from the upper meridian of the observer to the meridian of the heavenly body; and it is measured westerly from 0 to 360° .

Note:

- A celestial body on the upper meridian has 360 ° L.H.A.
- A celestial body on the Lower meridian has 180 ° L.H.A.

The 2nd Equatorial system of coordinates:

Mutual perpendicular great circles are:

- Equinoctial circle.
- Meridian of vernal equinox point (**Y**).

Elements of coordinates are:

- Declination (or Polar distance) as in the 1st Equatorial system.
- Sidereal hour angle (or Right Ascension).

Sidereal Hour Angle (S.H.A.) of a heavenly body:

It is an arc on the equinoctial; starting from the meridian of the vernal equinox point to the meridian of the heavenly body. It is measured Westerly from 0° to 360°.

Right Ascension (R.A.) of a heavenly body:

It is an arc on the equinoctial starting from the meridian of the vernal equinox point to the meridian of the heavenly body. It is measured Easterly from 0h to 24 h.

Relation between S.H.A. and R.A. of a heavenly body:

 $\begin{array}{l} \Upsilon X^{\prime\prime} \text{ in } \underline{Westward} \text{ direction is S.H.A (Sidereal Hour Angle) of the body X} \\ \Upsilon X^{\prime\prime} \text{ in } \underline{Eastward} \text{ direction is R.A (Right Ascension)} \\ \text{ of the body X} \\ \text{ So we have:} \end{array}$

$$S.H.A* + R.A.* = 360^{\circ} \text{ or } 24 \text{ h}$$

Apparent Diurnal Motion

The necessary Condition for rising and setting phenomena

For a heavenly body to rise and set, the parallel of declination of that body must cut the horizon circle.

In the figure, the parallels of declination of each of body X and body Y cuts the horizon circle in X_1 and Y_1 respectively. Thus for the bodies X and Y, The necessary condition to rise and set is:

For body X : Q'a' < Q'N i.e. Dec.< (90-lat)

For body Y : Q b < Q S i.e. Dec.< (90-lat) Thus the necessary condition for a celestial body to *Rise and Set* is:

Dec. + Lat. < 90

The necessary condition of a heavenly body to be above the horizon for an interval greater than below or vice versa :

Regarding figure (); which represents the celestial sphere of <u>north latitude</u> observer; the heavenly body X of N. Dec.; and the heavenly body Y of S. Dec.; We notice that the body X being above the horizon for an interval greater than below and the body Y being above the horizon for an interval less than below.

Regarding figure (); which represents the celestial sphere of <u>south latitude</u> observer; the heavenly body X of N. Dec. and the heavenly body Y of S. Dec.; We notice that the body X being above the horizon for an interval less than below and the body Y being above the horizon for an interval greater than below. From above analysis we conclude the following rules:

If [Lat. + Dec. ≤ 90 ; and lat. Is <u>same name</u> as Dec.] \rightarrow Rising interval \geq setting interval

If [Lat. + Dec. < 90]; lat. Is <u>contrary name</u> to Dec.] \rightarrow Rising interval < setting interval

The necessary condition for a heavenly body to be circumpolar

For a heavenly body to be circumpolar; it's parallel of declination does not intersect the horizon In the figure, the parallel of declination of the body X is completely above the horizon whilst that of the body Y is completely below the horizon.

Thus the necessary conditions for the heavenly bodies X & Y to be circumpolar are:

For X: Q' $a' \ge Q' N$ i.e. Dec. \ge (90 - Lat.) For Y: Q $b' \ge Q S$ i.e. Dec. \ge (90 - Lat.)

Thus the necessary condition is:

Dec. + Lat. \geq 90

The condition of a heavenly body to be circumpolar above or below the horizon

Regarding figure (); which represents the celestial sphere of north latitude observer; and the heavenly body X which has a N. Dec. and the heavenly body Y which has a S. Dec.

We notice that the heavenly body X being a circumpolar above the horizon and the heavenly body Y being a circumpolar below the horizon.

Regarding figure (); which represents the celestial sphere of south latitude observer; and the heavenly body X which has a N. Dec. and the heavenly body Y which has a S. Dec.

We notice that the heavenly body X being a circumpolar below the horizon and the heavenly body Y being a circumpolar above the horizon.

From above analysis we conclude the following rules:

If [Lat. + Dec. ≥ 90 ; lat. same name as Dec.]

 $\rightarrow\,$ The heavenly body being a circumpolar above the horizon.

If $[Lat. + Dec. \ge 90]$; lat. contrary name to Dec.] \rightarrow The heavenly body being a circumpolar below the horizon.

The necessary condition for a heavenly body to cross the upper meridian at zenith point

Regarding figure (); which represents the celestial sphere for a N latitude observer and heavenly body X of north declination equals the latitude of the observer; we notice that the heavenly body crosses the upper meridian at zenith point.

Regarding figure (); which represents the celestial sphere for a S latitude observer and heavenly body X of south declination equals the latitude of the observer; we notice that the heavenly body crosses the upper meridian at zenith point.

Thus the necessary conditions for a heavenly body to cross the zenith point are:

- 1. Declination = Latitude
- 2. Latitude. & Declination are same names.

The necessary condition for a heavenly body to cross the prime vertical circle above the horizon

Regarding figure (); which represents the celestial sphere for a N latitude_observer and heavenly body X of north declination less than the latitude of the observer; we notice that the heavenly body crosses the prime vertical circle above the horizon.

Regarding figure (); which represents the celestial sphere for a S latitude_observer and heavenly body X of south declination less than the latitude of the observer; we notice that the heavenly body crosses the prime vertical circle above the horizon.

Thus the necessary conditions for a heavenly body to cross the prime vertical circle above the horizon are:

- 1. Declination = Latitude
- 2. Latitude. & Declination are same names.

Characteristics of the apparent diurnal motion for an observer on the Equator :

Regarding the figure; for an observer on the Equator we notice that, the North Pole coincides to the north point N; hence the South Pole coincides to the south point S. Also, we notice the following:

- The Equinoctial coincides to the Prime vertical circle.
- All the heavenly bodies rise and set.
- The Amplitude equals the declination of the heavenly body at the instance of its rise or set.
- The interval of being above the horizon equals the interval below for any heavenly body all-round the year.

Characteristics of the apparent diurnal motion for an observer at any of the earth's poles:

Regarding the figure ; for an observer at any of the Poles ; we notice that, the similar celestial pole coincides to the zenith point Z , hence the other celestial Pole coincides to the nadir point Z° . Also, we notice the following:

- The Equinoctial coincides to the Horizon circle.
- All the heavenly bodies are circumpolar.
- The altitude equals the declination of the heavenly body at any time.
- There are no cardinal points because the principle vertical circle is not defined.

North Pole

Apparent Annual

Motion of the Sun

The Earth's orbit around the sun

The Earth is one of the solar system planets and revolving around the Sun in an <u>elliptical orbit</u>, whilst the Sun being situated at a focus S of that ellipse.

Since our observations are made from the Earth's surface, the Sun appears to describe an <u>apparent</u> elliptical orbit around the Earth; C is the center of the Earth and the ellipse represents the apparent orbit of the Sun relative to the Earth.

The sequence of positions of the Sun, namely (a, e, f, b, g) in this orbit, corresponds the sequence of positions (A, E, F, B, G) of the Earth in its orbit around the Sun.

The closest distance between the two bodies is about 147 million Km. in January where the sun is said to be in Aphelion and the farthest is about 152 million km. in July where the sun is said to be in Perihelion.

The Ecliptic

In the course of the year, the Sun thus appears to make a complete circuit of the heavens against the background of the stars. The plane of that orbit is called the ecliptic.

The ecliptic is defined as:

The apparent annual path of the true Sun among the stars. It is a great circle inclined at an angle of $23^{\circ} 27'$ (as a mean value) to the equinoctial.

nal Equino

Plane of the Earth's Equato

Winter

Description of the apparent annual motion of the true Sun:

It has been pointed out .that the Sun makes a complete revolution around the ecliptic in roughly one year; 365 days, hence, the Sun covers about 1° a day along the ecliptic, which makes the night stars differs through the seasons.

Since the equinoctial divides the ecliptic in two halves, the Sun is in the northern hemisphere and has north declination half of the year whilst the other half it lies in the southern hemisphere and has south declination.

We notice that there are (4) significance points for the sun in its orbit ; two of them when crossing the Equinoctial known as the Equinoxes the others when reaching maximum distance from the Equinoctial known as the Solstices.

The table shows the names of these points, dates and the coordinates of the sun therefore.

Name of the point	Date	Dec.	R.A.	SHA
Vernal Equinox	21 st Mar.	00°	0h	360°
Summer Solstice	21 st Jun.	23° 27` N	6h	270°
Autumnal Equinox	23 rd Sept.	00°	12h	180°
Winter Solstice	22 nd Dec.	23° 27` S	18h	90°

Combination between annual motion and diurnal motion of the sun:

For an observer in the Equator (Latitude 00°):

- Day is always equal to night.
- Sun crosses zenith point Z twice a year at the dates of Equinoxes. i.e. on 21st March & 23rd Sept. when its declination is 00°.
- Sun reaches its maximum Amplitude 23° 27' at sunrise & sunset, twice a year at the dates of Solstices. (i.e. on 22nd Jun. & 22nd Dec. When its declination is 23° 27').

For an observer between the Tropics in the Torrid Zone:

(Latitude $< 23^{\circ} 27$ `N or S):

- The Sun rises and sets every day. (Dec. of Sun + Latitude < 90°)
- Twice a year the declination of the Sun will definitely be equal to the latitude of any observer in the Torrid Zone and on such days the Sun will pass through the zenith of the observer at noon.
- The Sun crosses the prime vertical circle above the horizon when (Declination < latitude; same names).

For an observer in the Temperate zone $(23^{\circ} 27) < Lat. < 66^{\circ} 33$ N or S:

- The Sun is never in the zenith because we always have : (Dec. of Sun < Lat.).
- The Sun definitely rises and sets since (Dec. of Sun + Lat. < 90°).

North Latitude Observer

Following day and night phenomena for a North Latitude observer $< 66^{\circ}.5$

- 1. At Vernal Equinox 21^{st} March, day \approx night.
- Following to 21st March, day increase and night decrease.
- At Summer Solstice 22nd June, longest day and shortest night occurs.
- Following to 22nd June, day decrease and night increase.
- 5. At Autumnal Equinox 23^{rd} September, day \approx night.
- Following to 23rd Sept., day decrease and night increase.
- At Winter Solstice 22nd Dec., shortest day and longest night occurs.
- Following to 22nd Dec., day increase and night decrease.
- 9. At next Vernal Equinox 21^{st} March, day \approx night, and the sequence is repeated.

Example: Alexandria / Egypt Lat. ≈ 30° N

1 st day	Sunrise	Sunset	Day light	
21^{st} Mar. day light = 12h 07m				
Apr.	5h 50m	18h 18m	12h 28m	
May	5h 18m	18h 36m	13h 18m	
June	4h 59m	18h 56m	13h 57m	
	22 nd June	day light =	= 14h 05m	
Jul.	5h 02m	19h 05m	14h 03m	
Aug.	5h 18m	18h 55m	13h 37m	
Sept.	5h 36m	18h 24m	12h 48m	
	23^{rd} Sept. day light = 12h 09m			
Oct.	5h 52m	17h 47m	11h 55m	
Nov.	6h 13m	17h 14m	11h 01m	
Dec.	6h 37m	17h 00m	10h 23m	
22^{nd} Dec day light = 10h 13m				
Jan.	6h 56m	17h 11m	10h 15m	
Feb.	6h 51m	17h 36m	10h 45m	
Mar.	6h 27m	17h 58m	11h 31m	

=======

South Latitude Observer

Following day and night phenomena for a South Latitude observer < 66°.5

- 1. At Vernal Equinox 21^{st} March, day \approx night.
- 2. Following to 21st March, day decrease and night increase.
- At Summer Solstice 22nd June, shortest day and longest night occurs.
- 4. Following to 22nd June, day increase and night decrease.
- 5. At Autumnal Equinox 23^{rd} September, day \approx night.
- Following to 23rd Sept., day increase and night decrease.
- At Winter Solstice 22nd Dec., longest day and shortest night occurs.
- Following to 22nd Dec., day decrease and night increase.
- At next Vernal Equinox 21st March, day
 ≈ night, and the sequence is repeated.

Example:

Sidney/ Australia Lat. $\approx 34^\circ$ S

1 st day	Sunrise	Sunset	Day light	
21^{st} Mar. day light = 12h 09m				
Apr.	6h 06m	17h 52m	11h 46m	
May	6h 29m	17h 16m	10h 47m	
June	6h 51m	16h 55m	10h 04m	
	22 nd Jun	e day light	= 9h 54m	
Jul.	7h 01m	16h 57m	9h 56m	
Aug.	6h 48m	17h 15m	10h 27m	
Sept.	6h 14m	17h 37m	11h 23m	
	23^{rd} Sept. day light = 12h 07m			
Oct.	5h 33m	17h 57m	12h 24m	
Nov.	4h 55m	18h 22m	13h 27m	
Dec.	4h 37m	18h 51m	14h 14m	
22^{nd} Dec day light = 14h 24m				
Jan.	4h 48m	19h 10m	14h 22m	
Feb.	5h 16m	19h 01m	13h 45m	
Mar.	5h 42m	18h 33m	12h 51m	

For an observer in the polar zone $(Lat. > 66^{\circ} 33' N \text{ or } S)$:

- One may observe a non-setting or non-rising Sun, since in these latitudes the condition:
 Dec. of Sun + Lat. > 90 ° is fulfilled.
- The number of days with non-setting Sun (*polar days*) or non-rising Sun (*polar nights*) increases with increasing the latitude of the observer. (See table).

Relation between Latitude and number of polar days

Latituda	Polar days	Polar days	Polar
Latitude	begins	ends	days
67° N	June 10 th	July 3rd	23 ^d
68° N	June 1 st	July 12 th	41 ^d
69° N	May 25th	July 18th	54 ^d
70° N	May 20 th	July 23rd	61 ^d
71° N	May 16 th	July 28th	73 ^d

Observer in Arctic Zone Port Vadso Latitude 70° N

Following day & night phenomena for an observer in Latitude ≈70° N starting from Vernal Equinox To Autumnal Equinox

1			
Day	Sunrise	Sunset	Day time
21st Mar	5h 58m	18h 17m	12h 19m
Apr. 1 st	5h 06m	19h 02m	13h 56m
May 1 st	2h 34m	21h 20m	18h 46m
May 10 th	1h 35m	22h 17m	20h 42m
May 15 th	0h 47m	23h 06m	22h 19m
May 16 th	0h 31m	23h 22m	22h 51m
$\approx May \ 20^{th} \ P$	olar days b	egins	
\approx July 23 rd Pa	\approx July 23 rd Polar days ends		
Jul. 29 th	0h 38m	23h 35m	22h 57m
Jul. 30 th	0h 55m	23h 18m	22h 23m
Jul. 31 st	1h 07m	23h 05m	21h 58m
Aug. 1 st	1h 18m	22h 55m	21h 37m
Aug. 5 th	1h 51m	22h 21m	20h 30m
Aug. 10 th	2h 24m	21h 47m	19h 23m
Aug. 15 th	2h 52m	21h 18m	18h 26m
Aug. 20 th	3h 17m	20h 51m	17h 34m
Aug. 25 th	3h 40m	20h 25m	16h 45m
Aug. 30 th	4h 02m	20h 00m	15h 58m
Sept. 1 st	4h 11m	19h 50m	15h 39m
Sept. 5 th	4h 28m	19h 30m	15h 02m
Sept. 10th	4h 48m	19h 06m	14h 18m
Sept. 15th	5h 08m	18h 43m	13h 35m
Sept. 20th	5h 28m	18h 19m	12h 51m
Sept.23rd	5h 40m	18h 06m	12h 26m
Sept. 25th	5h 47m	17h 56m	12h 09m
Sept. 30th	6h 07m	17h 33m	11h 26m

Apparent Motion

Of the Moon
The Moon's orbit:

- 1. Like any other heavenly satellite, the moon obeys Kepler's laws, and rotates around the earth in an elliptical orbit which in this case is very nearly circular, mean eccentricity of 0.0549.
- 2. The Mean radius of its orbit is 385000 Km from the center of the earth.

- 3. The mean angular daily movement relative to an imaginary observer at the barycenter is 13°.176 to the east.
- 4. When the moon reaches its nearest position to the earth it is said to be *in Perigee* (\approx 362600Km), and when farthest away it is said to be *in Apogee* (\approx 405400 Km).

- 5. The plane of the moon's orbit is inclined to the ecliptic at an angle of about (5° 09') and the projection of this orbit on the celestial sphere is nearly a great circle cutting the ecliptic in two opposite points called *nodes*. The *ascending node* is where the moon's path crosses the ecliptic moving from south to north whilst the other is the *descending node*.
- These nodes are not fixed but move westwards or retrograde along the ecliptic completing a full circuit in 18.6 years or 19°.3549 per year.

PHENOMENAS RELATED TO MOON'S ORBIT

There are four phenomena in direct relation to the Moon's orbit; they are:

- Size of the Moon
- Lunar periods
- Phases of the Moon
- One side only can be seen

These four phenomena are discussed in the followingparts.

A. Size of the Moon:

At lunar perigee the apparent angular radius of the Moon's disc is maximum, while at lunar apogee it will be minimum. The apparent angular radius ranges from 14'.65 to 17'.05. This means that the apparent disc will be smaller by about 14% when in apogee than perigee situation.

The Super Moon was a full Moon that occurred when the Moon was closest to Earth in its elliptical orbit.

Similarly the Mini Moon was a full Moon that occurred when the Moon was farthest from Earth in its elliptical orbit. The phenomena of SUPER MOON were happened at perigee of 2011-03-19; whilst the phenomena of MINI MOON were happened at Apogee of 2011-10-13.

B. Lunar periods

There are several ways to measure how much time it takes the Moon to complete one orbit.

The *sidereal month* is the time it takes to make one complete orbit with respect to the fixed stars, which is about 27.3 days.

In contrast, the <u>synodic month</u> is the time it takes the Moon to reach the same phase, which takes about 29.5 days. The *synodic period* is longer than the sidereal period because the Earth–Moon system moves a finite distance in its orbit around the Sun during each sidereal month, and a longer time is required to achieve the same relative geometry. Above figure illustrates this phenomena.

Other definitions for the duration of a lunar month include the time it takes to go from perigee to perigee (the *anomalistic month*), from ascending node to ascending node (the *draconic month*), and from two successive passes of the same ecliptic longitude (the *tropical month*). As a result of the slow precession of the lunar orbit, these latter three periods are only slightly different from the sidereal month.

The properties of the orbit described above are approximations. The Moon's orbit around the Earth has many irregularities.

mentioned lunar periods are summarized in the following table:

		Table of Lunar Periods
Name	Value (days)	Definition
sidereal month	27.32166155	with respect to the distant stars .
synodic month	29.53058886	with respect to the Sun.
anomalistic month	27.554550	with respect to the perigee (processes in 8.8504 years)
draconic (nodical) month	27.212220815	with respect to the ascending node (completed in 18.5996 years)
tropical month	27.321582	With respect to the vernal Equinox point.

C. Phases of the Moon

It's probably easiest to understand the moon cycle in this order: new moon and full moon, first quarter and third quarter, and the phases in between.

As shown in the above diagram, the **new moon** occurs when the moon is positioned *between* the earth and sun. The three objects are in approximate alignment. The entire illuminated portion of the moon is on the back side of the moon, the half that we cannot see.

At a **full moon**, the earth, moon, and sun are in approximate alignment, just as the new moon, but the moon is on the opposite side of the earth, so the entire sunlit part of the moon is facing us. The shadowed portion is entirely hidden from view.

The **first quarter** and **third quarter** moons (both often called a "**half-moon**"), happen when the moon is at a 90 degree angle with respect to the earth and sun. So we are seeing exactly half of the moon illuminated and half in shadow.

Once you understand those four key moon phases, the phases between should be fairly easy to visualize, as the illuminated portion gradually transitions between them.

An easy way to remember and understand those "between" lunar phase names is by breaking out and defining 4 words: crescent, gibbous, waxing, and waning.

The word crescent refers to the phases where the moon is less than half illuminated.

The word gibbous refers to phases where the moon is more than half illuminated.

Waxing essentially means "growing" or expanding in illumination, and *waning* means "shrinking" or decreasing in illumination.

Thus you can simply combine the two words to create the phase name, as follows:

After the new moon, the sunlit portion is increasing, but less than half, so it is **waxing crescent**. After the first quarter, the sunlit portion is still increasing, but now it is *more* than half, so it is **waxing gibbous**. After the full moon (maximum illumination), the light continually decreases. So the **waning gibbous** phase occurs next. Following the third quarter is the **waning crescent**, which wanes until the light is completely gone -- a new moon.

phase	Ahead or Behind the Sun	Rise Time in East	Mid-Point In Sky	Set Time In West
New	Within few minutes	Sunrise	Noon	Sunset
1st Qtr.	6 h behind	Noon	Sunset	Midnight
Full	12 h behind	Sunset	Midnight	Sunrise
3rd Qtr.	6 h ahead	Midnight	Sunrise	Noon

Times of Moonrise; reaching mid-point (meridian) and Moonset for each phase; with respect to Sunrise, Noon, Sunset and midnight times are summarized in the following table:

D. Why one side only?

The Moon is always has the same side pointing towards the Earth due to its rotating speed matching its orbit around the Earth exactly. This is clear from the figure shown.

It moves eastward in its orbit as viewed from Earth, about 13 degrees per day (changing rise/set times by \sim 50 minutes/day).

Apparent Motion of Planets

NEW SOLAR SYSTEM

The new solar system consists mainly of 8 planets, and 5 dwarf planets. In order of their distance from the sun, they are:

- 1. Mercury
- 2. Venus
- 3. Earth
- 4. Mars
- 5. Jupiter
- 6. Saturn
- 7. Uranus
- 8. Neptune

The planets are classified into:

• Inner and Outer Planets

This classification is due to their similarity in compositions.

• Inferior and Superior Planets

This classification is due to their orbits regarding that of the earth.

• Navigational and Non-Navigational Planets.

These classifications in accordance to their visibility in the night sky. These classifications are shown in the following diagram.

Relative Positions of Planets:

A. Inferior Planets:

Mercury and Venus are inferior planets in the Solar System. They are closer to the Sun than the Earth. Mars, Jupiter, Saturn, Uranus and Neptune are superior planets in the Solar System. They are further away from the Sun than the Earth.

From the Earth's perspective, the angular distance between the Sun and a planet is the *Elongation*. An elongation of 0° is called conjunction, one of 90° is quadrature, and one of 180° is opposition.

For an inferior planet, the conjunction is called inferior conjunction if the planet is between the Sun and the Earth, and is called superior conjunction if it is on the opposite side of the Sun from the Earth.

When an inferior planet follows the Sun and appears east of the Sun in the evening, it is in eastern elongation. When an inferior planet precedes the Sun and appears west of the Sun in the morning, it is in western elongation.

As both the orbits of an inferior planet and the Earth are elliptical rather than circular, the greatest elongation varies from 18° to 28° for Mercury and 47° to 48° for Venus respectively.

B. Superior Planets

A superior planet at opposition is closest to the Earth and appears the brightest. See the following Table.

At conjunction, a superior planet will be invisible due to the Sun's glare.

The following table gives the dates and magnitudes of *OPPOSITION*, for the navigational superior planets, in the years 2015 -2020.

	MA	RS	JUPIT	TER	SATURN		
year	Date	Mag.	Date	Mag.	Date	Mag.	
2015			06-Feb	-2.57	23-May	0.02	
2016	22-May	-2.06	08-Mar	-2.49	03- Jun	0.00	
2017			07- Apr	-2.46	15-Jun	0.00	
2018	27-Jul	-2.78	09- May	-2.51	27-Jun	0.02	
2019			10-Jun	-2.61	09-Jul	0.05	
2020	13-Oct	-2.62	14-Jul	-2.75	20-Jul	0.10	

Australian Amateur Astronomy

Magnitude of Planets:

The data of the 4-navigational planets are tabulated in the left-hand page of the *Nautical Almanac Tables*. The head of each column contains the apparent magnitude of each planet. In the figure shown for January 25,26,27 1990, the apparent magnitude of planet Venus is -4.3 and that of Mars is +1.4.

26		1990	JANUARY 25	, 26,
UT	ARIES	VENUS -4.3	MARS +1.4	JUPITE
25 ⁰⁰	G.H.A. 124 02.5 139 05.0	G.H.A. Dec. 188 21.8 S14 14.0 203 25.7 14.0	G.H.A. Dec. 217 38.8 S23 42.4 232 39.3 42.5	G.H.A. 31 29.1 46 31.9

From the following scale of the magnitude system, Venus is the brightest object following to Sun and Moon.

Apparent brightnesses of some objects in the magnitude system.

Planet Diagram

In the Nautical Almanac Tables page (9) a *Planet Diagram* is printed. In our stage of study we give importance to:

- a) Whether a planet is too close to the sun for observation;
- b) Some indication of its position in the sky, especially during twilight;
- c) The proximity of other planets.

An Example of planet Venus is given through the *Planet Diagram* of the year 1990.

Planet Diagram of the year 1990.

VENUS

- 1) Venus is a brilliant object in the evening sky for the first few days of the year when it becomes too close to the Sun for observations.
- 2) Towards the end of January it reappears as a morning star and can be seen until a few days after mid-September when it again becomes too close to the Sun for observations.
- 3) It reappears in the evening sky in mid-December.
- 4) Venus is in conjunction with Mercury on February 4, September 14 and December 18.
- 5) Venus is in conjunction with Saturn on February 7 and 14.
- 6) Venus is in conjunction with Jupiter on August 12.

Kepler's Laws:

Johannes Kepler, working with data painstakingly collected by **Tycho Brahe** without the aid of a telescope, developed three laws which described the motion of the planets across the sky.

- A. The Law of Orbits.
- B. The Law of Areas.
- C. The Law of Periods.

Kepler's laws were derived for orbits around the sun, but they apply to satellite orbits as well.

The Law of Orbits

All planets move in elliptical orbits, with the sun at one focus.

The Law of Areas

A line that connects a planet to the sun sweeps out equal areas in equal times. Note:

The speed of the planet increases as it nears the sun and decreases as it recedes from the sun. This means that the speed of the planet is no uniform.

The Law of Periods

The square of the period of any planet is proportional to the cube of the semi-major axis of its orbit. The mathematical form of this law is given as:

 $\frac{(T1)^2 \cdot (Ms + M1)}{(T2)^2 \cdot (Ms + M2)} = \frac{a1^3}{a2^3};$

Where

 M_1 : mass of planet₁ M_2 : mass of planet₂ M_5 : mass of the Sun a_1 : semi-major axis of the orbit of planet₁ a_2 : semi-major axis of the orbit of planet₂ T_1 : sidereal period of planet₁ T_2 : sidereal period of planet₂

Identification of Navigation Stars

Apparent Annual Path of the Sun among the Stars:

Regarding star maps we notice that the sun moves in a sine curve; half of this curve is situated in the northern hemisphere and the other in the southern hemisphere. This curve is the projection of the annual great circle in which the sun moves among the stars and known as the Ecliptic.

Appear and Disappear of Stars:

When the sun moves in the Ecliptic; its Right Ascension increase (true motion) and Sidereal Hour Angle decrease (apparent motion). This is the cause of seeing different stars oppositely to the sun's position. This is explained as follows.

A. Stars of Northern Spring:

Sun reaches SHA= 000° at about ($20^{\text{th}} - 21^{\text{st}}$) March. This means that the stars of SHA= 180° are seen in the middle of the celestial sphere at midnight. Regarding map of stars given in the *Nautical Almanac Tables*; we find that the stars of *Ursa Major* and neighbor stars verify this condition. Those are Northern Spring Stars.

B. Stars of Northern Summer:

Sun reaches SHA= 270° at about ($21^{st} - 22^{nd}$) June. This means that the stars of SHA= 90° are seen in the middle of the celestial sphere at midnight. Regarding map of stars given in the *Nautical Almanac Tables*; we find that the groups of stars known as the *Summer Triangle* and neighbor stars verify this condition. Those are Northern Summer Stars.

C. Stars of Northern Autumn:

Sun reaches SHA= 180° at about $(22^{nd} - 23^{rd})$ September. This means that the stars of SHA= 180° are seen in the middle of the celestial sphere at midnight. Regarding map of stars given in the *Nautical Almanac Tables*; we find that the constellation of stars known *Pegasus* and neighbor stars verify this condition. Those are Northern Autumn Stars.

D. Stars of Northern Winter:

Sun reaches SHA= 090° at about $(21^{st} - 22^{nd})$ December. This means that the stars of SHA= 270° are seen in the middle of the celestial sphere at midnight. Regarding map of stars given in the *Nautical Almanac Tables*; we find that the constellation of stars known *Orion* and neighbor stars verify this condition. Those are Northern Winter Stars.

	I		I.	I							
Date	SUN`s C	Coordinates	Day Interval	Night Interval							
Date	S.H.A.	Dec.	Day mervar	Tylgint Interval							
Jan.1 st	$\approx 078^{\circ}$	$\approx 23^{\circ} \mathrm{S}$	10h 15m 27s	13h 44m 33s							
Feb.1 st	$\approx 045^{\circ}$	$\approx 17^{\circ} \mathrm{S}$	10h 46m 54s	13h 13m 06s							
Mar.1 st	$\approx 018^{\circ}$	$\approx 07^{\circ} \mathrm{S}$	11h 33m 01s	12h 26m 59s							
March	$\approx 000^{\circ}$	$\approx 00^{\circ}$	12h 07m 26s	11h 52m 34s							
$(20^{\text{th}} - 21^{\text{st}})$	Day equals	Day equals Night (approximately)									
Apr.1 st	≈ 349°	$\approx 05^{\circ} N$	12h 29m 13s	11h 30m 47s							
May.1 st	≈ 321°	$\approx 15^{\circ} N$	13h 20m 07s	10h 39m 53s							
Jun.1 st	$\approx 290^{\circ}$	$\approx 22^{\circ} N$	13h 57m 07s	10h 02m 53s							
June	$\approx 270^{\circ}$	$\approx 23^{\circ}.5 \text{ N}$	14h 04m 47s	9h 55m 13s							
$(21^{st} - 22^{nd})$	Longest da	Longest day light and shortest night									
Jul.1 st	≈ 259°	$\approx 23^{\circ} \text{ N}$	14h 02m 44s	9h 57m 16s							
Aug.1 st	≈ 228°	$\approx 18^{\circ} N$	13h 34m 20s	10h 25m 40s							
Sept.1 st	≈ 199°	$\approx 08^{\circ} N$	12h 45m 36s	11h 14m 24s							
Sept.	\approx 180°	$\approx 00^{\circ}$	12h 08m 23s	11h 51m 37s							
(22 nd - 23 rd)	Day equals	Night (approx	imately) ^۱								
Oct.1 st	≈ 172°	$\approx 03^{\circ} \mathrm{S}$	11h 52m 13s	12h 07m 47s							
Nov.1 st	≈ 143°	$\approx 15^{\circ} \mathrm{S}$	10h 59m 10s	13h 00m 50s							
Dec.1st	≈ 112°	$\approx 22^{\circ} \mathrm{S}$	10h 21m 35s	13h 38m 25s							
Dec.	$\approx 090^{\circ}$	$\approx 23^{\circ}.5 \text{ S}$	10h 12m 54s	13h 47m 06s							
$(21^{st} - 22^{nd})$	Shortest da	Shortest day light and longest night									

Jan.1st

 $\approx 078^{\circ}$

 $\approx 23^{\circ} \mathrm{S}$

Coordinates of the Sun and how it affects day and night phenomena is given in the following table. This table is calculated for Alexandria /Egypt (30° N, 30°E) as an example.

10h 15m 27s

13h 44m 33s

Introduction:

In the following discussion; we shall apply the simplest way to identify navigational stars. First we recognizes a famous constellation (or set of constellations) from which we can distinguish a lot of neighbor stars.

Applying this method is done as follows:

- A. For every accompanied map on which names of stars is given; we recognizes the famous basic constellation then reaches every star in the neighborhoods. We obey the following arrangement:
 - Map of northern spring. Midnight of 1st April; where (12) stars are identified.
 - Map of northern summer. Midnight of 1st July; where (11) stars are identified.
 - Map of northern autumn. Midnight of 1st October; where (8) stars are identified.
 - Map of northern winter. Midnight of 1st January; where (12) stars are identified.

This procedure gives us simplest way to recognize 43 navigation stars regarding the 57 stars named in the daily pages of the *Nautical Almanac Tables*.

- B. At the end of discussion the same map used before is given but without names stars to give the student a chance to identify the navigation stars by himself. This needs several trials to be satisfied.
- C. A table of times suitable for seeing the same map; is given for every 15 days at the end of discussion.
- D. A table of times suitable for seeing the 4 maps; is given at the end of chapter.

Stars of Northern Spring

Basic reference is the Constellation URSA MAJOR (Big Dipper)

In the spring, the Big Dipper (URSA MAJOR) is above the pole, high in the sky, and serves to point out several excellent navigational stars.

- The above map (1) represents the celestial sphere on April 1st at midnight local time of Alexandria/Egypt ≈ (30° N; 30° E).
- Number of navigation stars recognized are (12) stars.
- The same celestial sphere appears at the following times and dates:

Day/Month	Z.T.	Day/Month	Z.T.	Day/Month	Z.T.
Feb. 1 st	0400	Mar. 15 th	0100	May 1 st	2200
Feb. 15 th	0300	Apr. 1 st	0000	May 15 th	2100
Mar. 1 st	0200	Apr. 15 th	2300	Jun. 1 st	2000

- Ursa Major consists of 7-stars forms a very famous figure; only 3 of them are tabulated in the daily pages of the Nautical Almanac tables as navigation stars. They are *Dubhe*; *Alioth* and *Alkaid*.
- The outer stars of the bowel *Dubhe* and Mirak are known as the pointers because a line from *Mirak* through *Dubhe* with 5 folds of distance in between leads to the pole star *Polaris*.
- Starting at the bowel, follow the curvature of the handle. If this curved arc is continued, it leads first to *Arcturus*, and then to *Spica*, both 1st mag. stars much used by the navigator.
- A line northward through the pointers of the big dipper leads to *Polaris*. If this line is followed in the opposite direction, it leads in the general direction of *Regulus* the end of the handle of the sickle (or question mark) in the constellation *Leo* (lion). This much used navigational star is of the 1st mag. and the brightest star in its part of the sky.
- A line connecting *Regulus* and *Arcturus* passes close to 2nd mag. *Denebola* (tail of the lion) sometimes used by navigators.
- Alkaid, Arcturus and Alphecca form a right angle triangle, right angle at Alphecca.
- *Corvus* (the crow) resembles more nearly a quadrilateral sail. It is not difficult to find and contains the 3rd mag. navigational star *Gienah*.
- Starting from *Regulus*, a line through *Spica* in the SE direction leads to a 3rd mag. star *Zubenelgenubi*, and from *Regulus*, also, a line through *Gienah* in the SE direction leads to a 3rd mag. star *Menkent*.
- The 2nd mag. navigational star *Alphard* is more easily identified by its being close to the extension of a line from the pointer of the big dipper through *Regulus* and extended southward.

From the discussion above we can identify (12) of navigation stars;

Dubhe, Alioth, Alkaid Arcturus, Spica, Regulus, Denbola, Alphecca, Gienah, Zubenelgenubi,, Menkent, and Alphard.

The following map of the spring sky is the same map in next page but without names of the navigation stars. This is to help student to identify and name the navigation stars.

Stars of Northern Summer

Basic reference is a set of Constellations known as Summer Triangle

Celestial sphere revolves from East to West according to the apparent diurnal motion; spring stars begins to disappear through the western horizon. The Ursa Major moves to be west of the pole star Polaris. The pointer line seems to be horizontal. Constellation of *Cassiopeia* begins to appear above the eastern horizon.

- The above map (2) represents the celestial sphere on July 1st at midnight local time of Alexandria/Egypt ≈ (30° N; 30° E).
- Number of navigation stars recognized are (9) stars.
- The same celestial sphere appears at the following times and dates:

Day/Month	Z.T.	Day/Month	Z.T.	Day/Month	Z.T.
May 1 st	0400	Jun. 15 th	0100	Aug. 1 st	2200
May 15 th	0300	Jul. 1 st	0000	Aug. 15 th	2100
Jun. 1 st	0200	Jul. 15 th	2300	Sept. 1 st	2000

- The 1st magnitude stars, *Vega*, *Deneb* and *Altair* form a distinct right triangle (right angle at *Vega*), which used as an identification feature. However, each one is in a different constellation which should enable one to identify it without reference to any other stars.
- **Deneb** is in the northern cross (*Cygnus*); the eastern arm of the cross points to **Enif**, the western arm to **Eltanin**, and the bisectors of the lower right angles point to **Altair** and **Vega**.
- *Altair* is readily identified by the small stars on either side of it, sometimes called the guardians. It should be kept in mind, however, that the southern guardian is only a 4th magnitude star and may not show too plainly on very hazy or bright moonlight nights. This configuration is unique and should identify *Altair* through a break in the overcast with no other stars showing.
- *Vega* may be identified under these conditions by an almost perfect parallelogram slightly to the south and east of it. Again, however, these are 4th magnitude stars and are not too distinct if conditions unfavorable.
- *Rasalhague* forms nearly an equilateral triangle with *Vega* and *Altair*. This 2nd magnitude star and 3rd magnitude *Sabik*, to the south, are occasionally used by navigators.
- *Scorpio* (the scorpion) is one constellation which resembles the animal for which it is named without too much stretch of the imagination. The curve from *Antares*, the main navigational star, to *Shaula* is particularly suggestive of a scorpion's tail.
- Immediately to the east is a group forming the shape of a teapot with the 2nd magnitude star *Nunki* in the handle. At the opposite side of the teapot, is the 2nd magnitude star *Kaus Australis*

From the discussion above we can identify (11) of navigation stars;

Vega, Deneb, Altair, Enif, Eltanin, Rasalhague, Sabik, Antares, Shaula, Nunki and Kaus Australis

The following map of the spring sky is the same map in the next page but without names of the navigation stars. This is to help student to identify and name the navigation stars.

Stars of Northern Autumn

Basic reference is the Constellation Pegasus (winged horse)

The autumn sky is marked by an absence of 1st magnitude stars. The *Northern Cross* has moved to a position low in the western sky, and *Cassiopeia* is nearly on the meridian to the north.

- The above map (3) represents the celestial sphere on October 1st at midnight local time of Alexandria/Egypt ≈ (30° N; 30° E).
- Number of navigation stars recognized are (8) stars.
- The same celestial sphere appears at the following times and dates:

Day/Month	Z.T.	Day/Month	Z.T.	Day/Month	Z.T.
Jul. 15 th	0500	Sept. 15 th	0100	Nov. 15 th	2100
Aug. 1 st	0400	Oct. 1 st	0000	Dec. 1 st	2000
Aug. 15 th	0300	Oct. 15 th	2300	Dec. 15 th	1900
Sept. 1 st	0200	Nov. 1 st	2200		

- For most observers in the Mediterranean, the great square of *Pegasus* (the winged horse) appears nearly on the meridian at zenith. The eastern side of this square, and *Caph* in *Cassiopeia*, nearly mark the hour angle of the vernal equinox γ. *Alpheratz* and *Markab*, 2nd magnitude stars at opposite corners of the square, are the principal navigational stars of this constellation. 2nd magnitude *Enif* is occasionally used.
- The great square of *Pegasus* is useful in locating several navigational stars. The line joining the stars of the eastern side of the square, if continued southward, leads close to 2nd magnitude *Diphda* in Cetus (the sea monster). Similarly, a line joining the stars of the western side of the square, if continued southward, leads close to 1st magnitude *Foamalhaut*. A line through the center of the square, if continued eastward, leads to 2nd magnitude *Hamal*, in *Aries* (the ram).
- This was the location of the vernal equinox some 2000 years ago, when it is designated the "the first point of Aries".
- A curved line from *Markab* through *Alpheratz* leads to the 2nd magnitude *Mirfak*.
- A line from *Fomalhaut* through *Diphda* extends about 40° leads to *Menkar* knowing that, any side of the square is only 15°.

• *Famalhaut, Diphda* and the 2nd magnitude *Ankaa* form an equilateral triangle of about 20°. The navigational stars associated with Pegasus are (8) stars.

Alpheratz, Markab, Diphda, Fomalhaut, Hamal, Mirfak, Menkar and Ankaa.

The following map of the spring sky is the same map in the next page but without names of the navigation stars. This is to help student to identify and name the navigation stars.

Stars of Northern Winter

Basic reference is the Constellation Orion (the hunter)

No other part of the sky contains so many bright stars. The principal constellation of this region is *Orion* (the hunter), probably the best known constellation in the entire sky, with the exception of the big dipper. This figure is well known to navigators in both northern and southern hemispheres, as the belt of *Orion* lies almost exactly on the celestial equator.

- The above map (4) represents the celestial sphere on January1st at midnight local time of Alexandria/Egypt ≈ (30° N; 30° E).
- Number of navigation stars recognized are (11) stars.
- The same celestial sphere appears at the following times and dates:

Day/Month	Z.T.	Day/Month	Z.T.	Day/Month	Z.T.
Oct. 15 th	0500	Dec. 15 th	0100	Feb. 15 th	2100
Nov. 1 st	0400	Jan. 1 st	0000	Mar. 1 st	2000
Nov. 15 th	0300	Jan. 15 th	2300	Mar. 15 th	1900
Dec. 1 st	0200	Feb. 1 st	2200		

Celestial sphere revolves from East to West according to the apparent diurnal motion; therefor autumn stars begin to disappear through the western horizon. Constellation of *Orion* begins to appear above the eastern horizon. The constellation of *Orion* is the very famous one after *Ursa Major* since it has a lot of brightest stars in its neighborhood.

Constellation *Orion* consists of a square shape. In the middle of this shape there are 3 of $(2^{nd} \text{ magnitude})$ stars known as the *Orion Belt* and align with the Equinoctial. This means that it rises at East point and sets at West point and being above the horizon for about 12 hours. Constellation of *Orion* is seen for both north and south latitudes observers.

- The star *Alnilam* is the middle star of the *Orion Belt*; this 2nd magnitude star is tabulated in the daily page list of stars.
- The 4 stars of the square shape of *Orion* are *Rigel* in the SW corner and oppositely in the NE corner *Betelguese*; both of them is 1st magnitude star. West of *Betelguese* the 2nd magnitude star *Bellatrix* is situated in the NW corner. The forth star is not tabulated in the daily page list of stars.

Several good navigational stars may be found by the use of Orion.

- If the line of the belt is continued to the westward, it leads near the 1st magnitude reddish *Aldebaran*, in the V-shaped head of *Taurus*. If the line of the belt is followed in the opposite direction, it leads almost to *Sirius*, the brightest of all the stars. This is the principal star in the constellation of *Canis Major*, the hunter's large dog.
- Starting with *Sirius*, a rough circle can be drawn through *Procyon*, *Pollux* and *Castor*, *Capella*, *Aldebaran*, *Rigel*, and back to *Sirius*. All of these except *Castor* are 1st magnitude stars.
- Stars *Sirius* and *Betelguese* compose an equilateral triangle with the 1st magnitude star *Procyon*. South of this triangle (south of Sirius) is the star *Adhara* (2nd magnitude star).
- A line due north starting from the star *Alnilam* (middle of the *Orion Belt*), leads to the star *Elnath*. The extension of this line reaches one of the brightest stars in the northern hemisphere named *Capella*.
- A line through *Betelguese* starting from the star *Alnilam* (middle of the *Orion Belt*), leads to the stars *Pollux* and *Castor*. Castor is not tabulated in the daily page list of stars.

In east horizon constellation Leo start to be seen with its bright stars *Regulus* and *Denebola*.

In the NE direction *Ursa Major* appears again with its famous stars **Dubhe**, **Alioth** and **Alkaid** which has a low altitude.

The navigational stars associated with Orion Constellation are (11) stars.

Alnilam, Rigel, Betelguese, Bellatrix, Aldebaran, Sirius, Adhara, Procyon, Elnath, Capella and Pollux.

The following map of the spring sky is the same map in the next page but without names of the navigation stars. This is to help student to identify and name the navigation stars.

Local times of locking for star maps in the 1^{st} day and 15^{th} day of every month.

Oct	ober	Nove	mber	Decem	ıber	Jan	January Febru		uary	Ma	rch	A	oril	May		Ju	me	Ju	ıly	Augus	t	Septe	mber
1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15	1	15
				Map	(4) Sta	s of Not	thern W	inter															
	0500	0400	0300	0200	0100	0000	2300	2200	2100	2000	1900												
							Map (1) Stars of Nor				thern Sp	oring											
						0600	0500	0400	0300	0200	0100	0000	2300	2200	2100	2000							
											Map (2) Stars of N					s of Nort	rthern Summer						
													0500	0400	0300	0200	0100	0000	2300	2200	2100	2000	1900
																			Map	(3) Star	s of Nor	thern Au	tumn
																			0500	0400	0300	0200	0100
]	Map (3)	Stars of	Northern	1 Autum	n																		
0000	2300	2200	2100	2000	1900																		

Concept of Time

Searching for a Unit of Measuring Time

Introduction:

For a unit to be used in measuring a certain phenomena, it must covers two requirements:

- It must be constant in value under all conditions.
- It must agree with our daily affairs.

For such a unit to measure the time phenomena; the approach was the length of the interval of rotation of the Earth around its axis. The length of this interval is known as the day! But what day?

The name of the day is dependent on the body used in detecting the interval of rotation of the Earth. So we have three definitions for three different days:

- 1- The apparent solar day; relative to the sun
- 2- The lunar day; relative to the moon.
- 3- The sidereal day; relative to the vernal equinox point.

A. The Apparent Solar Day

"It is the interval between two successive transits of the true sun's center across the same meridian". Referring to the requirements of a measuring unit , we find the following :

- The Apparent Solar Day is not fixed.
- The apparent solar day agrees with our daily affairs.

Thus the Apparent Solar Day is not a perfect time keeper.

B. The Lunar Day

"It is the interval between two successive transits of the moon's center across the same meridian ". Referring to the requirements of a measuring unit, we find the following:

- The Lunar day is not fixed.
- The Lunar day is not agrees with our daily affairs.

Thus the Lunar day is not a perfect time keeper.

C. The Sidereal Day

"It is the interval between two successive transits of the Vernal equinox point (γ) across the same meridian ".

Referring to the requirements of a measuring unit, we find the following :

- The Sidereal day is absolutely fixed.
- The Sidereal day is not agreed with our daily affairs.

Thus the Sidereal day is not a perfect time keeper for our daily life, but it is divided into 24 hours and every minute into 60 seconds and so and used in observatories as sidereal units of time.

The above discussion is summarized in the following table:

Unit	Constancy	Agreement with our daily affairs
Apparent Solar Day	Not fixed	Agree with our daily affairs
Lunar Day	Not fixed	Not agree with our daily affairs
Sidereal Day	fixed	Not agree with our daily affairs

Regarding the previous discussion, summarized above, we conclude that it is necessary to search for another unit to measure time.

We start again with the motion of the true sun in the ecliptic. Why this motion did not give us a perfect time-keeper? .The answer of this question is that the motion of the true sun is not a perfect time-keeper for two reasons:

- According to the 2nd law of *Kepler*, the true sun moves around the earth (apparently) in an ellipse; this means that its motion is not uniform. In another words it moves in the ecliptic with a non- uniform speed.
- 2) The true sun moves in the plane of the ecliptic whilst the Earth rotates in the plane of the equinoctial; this means that if the sun moves in the ecliptic with a uniform speed, then its projected motion in the equinoctial plane will not be uniform due to the continuous change in Sun's declination.

So this problem is solved in two steps:

- We define a fictitious sun moves in the Ecliptic with a uniform speed equals to the average speed of the true sun. This is the *dynamical mean sun*. By this definition we reduce the eccentricity of the orbit.
- We define another fictitious sun moves in the Equinoctial with the same speed as that of the dynamical mean sun. This is the *astronomical mean sun* (for simplicity *mean sun*⊕). By this definition we reduce the obliquity of the Ecliptic.

Now we have a *fictitious sun* moves in the equinoctial with a uniform speed related to the speed of the true sun in the Ecliptic.

The above discussion is summarized in the following tables:

1st step to reduce the eccentricity.

Body	Orbit	Speed
True Sun	Ecliptic	Non-uniform
Dynamical Mean Sun	Ecliptic	Uniform (equals average speed of true sun)

2nd step to reduce the obliquity.

Body	Orbit	Speed
Dynamical Mean Sun	Ecliptic	Uniform (equals average speed of true sun)
Astronomical Mean Sun	Equinoctial	Uniform (equals average speed of true sun)
So we can define a <u>new day</u> known as the mean solar day; which the principal unit for measuring solar time as follows:

The Mean Solar Day:

"It is the interval between two successive transits of the mean sun across the same meridian."

Referring to the requirements of a measuring unit, we find the following:

- This interval is absolutely fixed (by definition).
- The maximum difference between the Hour Angle of each of true sun and mean sun is about 17 minutes. So the mean solar day agrees with our daily affairs.

The mean solar day is divided into 24mean solar hour and every hour is divided into 60 mean solar minute and so. These are Solar Units of Time

Definitions of Time

Following to determine a suitable unit for measuring time ; we can define three different kinds of time as follows :

- 1) Mean solar time which is related to the motion of mean sun \oplus .
- 2) Apparent solar time which is related to the motion of true sun \odot .
- 3) Sidereal time which is related to the motion of the vernal equinox point Υ

Greenwich Mean Time (G.M.T.):

" It is the angle at the celestial pole contained between the lower meridian of Greenwich and the meridian of the mean sun, measured in westward direction starting from the lower meridian of Greenwich and expressed in units of time ."

Relation between G.M.T. and G.H.A. of Mean Sun⊕ :

The G.M.T. is measured from the lower meridian of Greenwich whilst the G.H.A. is measured from the upper meridian of Greenwich; so:

UT (GMT) = G.H.A. $\oplus \pm 12h$ G.H.A. $\oplus =$ UT (GMT) $\pm 12h$

Local mean Time (L.M.T.):

"It is the angle at the celestial pole contained between the lower meridian of the observer and the meridian of the mean sun, measured in westward direction starting from the lower meridian of the observer and expressed in units of time".

Relation between L.M.T. and L.H.A. of Mean Sun⊕:

The L.M.T. is measured from the lower meridian of the observer whilst the L.H.A. is measured from the upper meridian of the observer ; so :

L.M.T. = L.H.A. $\oplus \pm 12h$ L.H.A. $\oplus =$ L.M.T. $\pm 12h$

Greenwich Apparent Time (G.A.T.):

" It is the angle at the celestial pole contained between the lower meridian of Greenwich and the meridian of the true sun, measured in westward direction starting from the lower meridian of Greenwich and expressed in units of time . "

Relation between G.A.T. and G.H.A. of True Sun₍₂₎:

The G.A.T. is measured from the lower meridian of Greenwich whilst the G.H.A. is measured from the upper meridian of Greenwich ; so :

 $G.A.T = G.H.A. \ \odot \pm 12h \\ G.H.A. \ \odot = G.A.T \pm 12h$

Local apparent Time (L.A.T.):

"It is the angle at the celestial pole contained between the lower meridian of the observer and the meridian of the true sun, measured in westward direction starting from the lower meridian of the observer and expressed in units of time".

Relation between L.A.T. and L.H.A. of Mean Sun⊙ :

The L.A.T. is measured from the lower meridian of the observer whilst the L.H.A. is measured from the upper meridian of the observer; so:

L.A.T. = L.H.A. $\odot \pm 12h$ L.H.A. $\odot =$ L.A.T. $\pm 12h$

Greenwich Sidereal Time (G.S.T.):

" It is the angle at the celestial pole contained between the upper meridian of Greenwich and the meridian of the vernal equinox point, measured in westward direction starting from the upper meridian of Greenwich and expressed in units of time."

Relation between G.S.T. and G.H.A. of vernal equinox point Y:

The G.S.T. is measured from the upper meridian of Greenwich and the G.H.A. is measured from the upper meridian of Greenwich; so:

$$G.S.T = G.H.A. \Upsilon$$

 $G.H.A. \Upsilon = G.A.T$

Local Sidereal Time (L.S.T.):

" It is the angle at the celestial pole contained between the upper meridian of the observer and the meridian of the vernal equinox point, measured in westward direction starting from the upper meridian of the observer and expressed in units of time."

Relation between L.S.T. and L.H.A. of vernal equinox point Y:

The L.S.T. is measured from the upper meridian of the observer and the L.H.A. is measured from the upper meridian of the observer; so:

L.S.T = L.H.A.
$$\Upsilon$$

L.H.A. Υ = L.A.T

Note:

Sidereal Time is reckoned by Sidereal Clocks in observatories.

----- (1)

Relation between L.M.T. and UT (G.M.T)

In figure (1) Left	
$< Q_G^{M} $ represents UT (G.M.T)	(a)
< Q [`] ₁ M represents L.M.T.	(b)
$< Q'_G Q'_1 = < Q_G Q_1 = Long.$ West	(c)
From (a), (b) and (c) we have:	

$$L.M.T. = UT (G.M.T.) - Long. West$$

In figure (2) right

$< Q_G^{\circ}M$ represents UT (G.M.T)	(d)
$<$ Q $_2$ M represents L.M.T.	(e)
$< Q_G^2 = < Q_G Q_2 = Long.$ East	(f)
From (d), (e) and (f) we have:	

$$L.M.T. = UT (G.M.T.) + Long. East$$
 ------ (2)

From equations (1) & (2) we have:

$L.M.T. = UT (G.M.T.) \pm Long$	E W
UT (G.M.T.) = $L.M.T. \pm Long$	W E

By the same procedure we have:

$L.A.T. = G.A.T. \pm Long \frac{E}{W}$
$G.A.T. = L.A.T. \pm Long \frac{W}{E}$
2
$L.S.T. = G.S.T. \pm Long \frac{E}{W}$
G.S.T. = L.S.T. $\pm \text{Long} \frac{W}{E}$

And:

Equation of Time

In nautical astronomy it is often required to convert from mean time to the hour angle of the true sun, for problems of this nature it is necessary to know the so-called equation of time, by which is meant the difference between mean time and apparent time; reckoning them from one and the same meridian.

This difference is numerically equal to the arc of the equator between the meridians of the mean sun and true sun.

Eq. of time = H.A. \odot - H.A. \oplus = R.A. \oplus - R.A. \odot

This means that the Eq. Of time is numerically equal to the difference of the hour angles of the true and the mean suns; or the difference of the right ascensions of the mean and true suns.

The sign (-) is given if the meridian of the mean sun is diurnal motion is ahead of the meridian of the true sun, and (+) if behind.

The Eq. of time is the resultant of two components; the 1st is due to the reduction of the motion of the true sun on the ecliptic to be a uniform motion. This component is called equation of the center or component due to eccentricity (E₁). The 2nd component is due to the reduction to the equator. This component is called the component due to obliquity (E₂).

The equations of E_1 and E_2 are out of the scope of this text, but the curves representing them are shown; from which we notice that:

- E_1 is zero near 3rd January (the farthest distance between Sun and Earth) and 5thJuly the least distance between them.
- E₂ is zero in the 4-days of Equinoxes and solstices.
- The overall quantity $E = E_1 + E_{2 is}$ zero four times a year; namely15thApr., 14thJun, 1stSept and 25thDec.
- Also it has four extreme values at 11th Feb. (+ 14.4m); 26th Jul. (+6.4m); 15th May (-3.8 m) and finally 3rd Nov. (-16.4 m).
- This is shown in the following table.

	date	Apr. 15 th	Jun. 14 th	Sep. 1 st	Dec. 25 th
Eq.	of time	00.0m	00.0m	00.0m	00.0m
	1 /	T 1 1 1 1 th) (Ofth	T 10 cth	AL Ard

date	Feb. 11 th	May 25 th	Jul 26 th	Nov. 3 rd
Eq. of time	+14.4m	-03.8m	+6.4m	-16.4m

• The above figure shows the curve of the equation of time E; the curve of the eccentricity component (E_1) and the curve of the obliquity component E_2 .

Solved Example (1):

It was noticed that the sun crosses the upper meridian of a certain observer on board a ship at the noon of Feb. 11th.

Where:

- Long. Was 135° 12`.0 W;
- Equation of time was (+ 4m 04s).

Calculate each of; L.M.T. and G.M.T. of this phenomena. Solution:

L.A.T.	12h 00m 00s Feb. 11 th	
Eq. of time	(-) 04m 04s	
L.M.T.	11h 55m 56s Feb. 11 th	
Long. (+)	09h 00m 48s	
G.M.T.	20h 56m 44s Feb. 11 th	Solved Example (2):

Sun was observed when crossing the upper meridian of Greenwich at G.M.T. 12h 08m 04s. Calculate the value and sign of the Equation of time. Solution:

G.A.T.	12h 00m 00s
G.M.T.	12h 08m 04s
Eq. of time	(-) 08m 04s

Solved Example (3):

Sun was observed when crossing the upper meridian of Greenwich at G.M.T. 11h 58m 44s. Calculate the value and sign of the Equation of time. Solution:

G.A.T.	12h 00m 00s
G.M.T.	11h 58m 44s
Eq. of time	(+) 01m 16s

Extraction of the Equation of Time from N.A. Tables:

The Equation of time is given twice a day in the Nautical Almanac Tables; 1st value at Greenwich Time 00h and the second at Greenwich Time 12h without sign.

We can apply the suitable sign by comparing between the L.M.T. & L.A.T. of Meridian Passage of the sun. L.M.T. mentioned is given daily under the column labeled Mer. Pass. While the L.A.T., at the same phenomena is known to be 1200 h. The following solved examples show the procedure of application.

The following flow chart is useful in solving problems of time relations:

Solved Example (1)

At a certain moment the universal time G.M.T. was recorded 11h 50m 18s Apr. 20th 1990. Calculate the L.M.T. at the same moment for an observer in Long. 110° 18`.0 W.

Solution:

Table extracted from N.A. Tables

Day	Sun Eq. of time.		Mer.
	00h	12h	газз.
19	00 ^m 45 ^s	00 ^m 51 ^s	1159
20	00 ^m 58 ^s	01 ^m 04 ^s	1159
21	01 ^m 10 ^s	01 ^m 16 ^s	1159

Solved Example (2)

At a certain moment the G.A.T. was recorded 08h 12m 40s Jul. 1st, 1990. Calculate the L.M.T. at the same moment for an observer in Long. 175° 20`.0 W.

Solution:

1200	G.A.T.	08h 12m 40s Jul. 1st
	Eq. of time	+ 03m 45s
1204	G.M.T.	08h 16m 25s Jul. 1st
	Long. (-)	11h 41m 20s
	L.M.T.	20h 35m 05s Jun. 30th

Table extracted from N.A. Tables

Day	Sun Eq. of time.		Mer.
	00h	12h	1 ass.
30	03 ^m 29 ^s	03 ^m 35 ^s	1204
1	03 ^m 41 ^s	03 ^m 47 ^s	1204
2	03 ^m 53 ^s	03 ^m 59 ^s	1204

Solved Example (3)

At a certain moment the L.M.T. was recorded 11h 04m 48s Nov. 27th;1990, for an observer in long. 170° 12`.0 W. Calculate the G.A.T. at the same moment

Solution:

	L.M.T.	11h 04m 48s Nov. 27 th
	Long.	11h 20m 48s
1148	G.M.T.	22h 25m 36s Nov. 27 th
	Eq. of time	12m 17s
1200	G.A.T.	22h 37m 53s Nov. 27 th

Table extracted from N.A. Tables

Day	S Eq. c	Mer. Pass			
	00h	12h	Pass.		
27	12 ^m 35 ^s	12 ^m 25 ^s	1148		
28	12 ^m 16 ^s	12 ^m 06 ^s	1148		
29	11 ^m 55 ^s	11 ^m 45 ^s	1148		

Zone Time

- There are 360 meridians of longitude 1° intervals round the earth and it would be most confusing if there were a separate L.M.T. for each meridian. For this reason the zone time system have been established.
- Under the zone time system, the earth's surface is divided into zones each of which is 15° of longitude wide, extending from pole to pole.
- Zone zero [0] extends from long. 7° 30' W to long. 7° 30' E; so that Greenwich meridian is the mid-meridian of this zone. Within the boundaries of zone [0] the zone time is G.M.T.
- Zone [+1] extends from long. 7° 30' W to long. 22° 30' W; its mid-meridian being 15° W. Within the boundaries of this zone the time kept is 1 hour less than G.M.T.; and corresponds to the L.M.T. of long. 15° W. This zone is called zone [+1] because an observer on board a ship anywhere in this zone keeping the time of zone [+1] merely has to add one hour to this zone to obtain G.M.T. in accordance to the equation :

$$G.M.T. = L.M.T. + Long. W$$

• Zone [+2] extends from long. 22° 30' W to long. 37° 30' W., its mid-meridian being long. 30° W. It is clear that, this time is less than G.M.T. by 2-hours, so when keeping this zone time onboard a ship; 2 hours must be added to zone time to obtain G.M.T.

By the same procedure zone areas extended westerly up to the special area [12] of mid long. 180°.

• Zone [-1] extends from long. 7° 30' E up to long. 22° 30' E , its mid-meridian being 15° E. Within the boundaries of this zone the time kept is 1 hour ahead of G.M.T. ; and corresponds to the L.M.T. of long. 15° 00' E. This zone is called zone [-1] because an observer on board a ship anywhere in this zone keeping the time of zone [-1] merely has to subtract one hour to this zone to obtain G.M.T. in accordance to the equation :

$$G.M.T. = L.M.T. - Long. E$$

Zone [-2] extends from long.22° 30'E up to long. 37° 30'E, and the time kept in this zone is the L.M.T. of the middle long. 30° 00' E. It is clear that this time is ahead of G.M.T. by 2- hours. When keeping the zone time of zone [-2]; 2 hours, must be subtracted from zone time to obtain G.M.T. By the same procedure zone areas extended easterly up to the special area [12] of mid long. 180°.

00AM- 01AM- 02AM- 03AM- 04AM- 05AM- 06AM- 07AM- 08AM- 09AM- 10AM- 11AM- 12AM 01PM- 02PM- 03PM- 04PM- 05PM- 06PM- 07PM- 08PM- 09PM- 10PM- 11PM-

- $G.M.T. = L.M.T. \pm Long. \frac{W}{E}$ $G.A.T. = L.A.T. \pm Long. \frac{W}{E}$ $G.D. = Z.T. \pm Z.N. \frac{W}{E}$ $G.M.T. = G.M.T. \pm Long. \frac{W}{E}$ $C.T. = G.M.T. \pm Long. \frac{W}{E}$ $C.T. = G.D. (\pm Z.N. \frac{W}{E})$
- A. Relation between GREENWICH & LOCAL Phenomena

B. Relation between G.M.T.; G.A.T. & Equation of time:

C. Relation between types of time:

How to obtain ZN (Zone Number) of ship's position:

In order to find the zoon in which the ship is situated ; the quickest method is to convert the longitude of its position into units of time (dividing by 15) then considering the nearest whole hour as Z.N. ; with minus sign (-) for East Longitude and positive sign (+) for west Long.

```
Solved Example (1):
```

Find the Zone Number Z.N. of a ship in DR position (33° 32' N; 133° 55' W).

Answer:

Long. 133° 55' = 8h 55m 40s i.e. Z. N. = (+ 9)

Solved Example (2):

Find the Zone Number Z.N. of a ship in DR position (53° 32' N; 105° 50' E).

Answer:

Long. $105^{\circ} 50' = 7h \ 03m \ 20s$ i.e. Z. N. = (-7)

Relation between Zone Time and Universal Time

Regarding the following relation between UT (G.M.T.) and Local Mean Time (L.M.T.)

UT (G.M.T.) = L.M.T. \pm Long $\frac{W}{F}$

We can write the relation between UN (G.M.T.) and Zone Time (Z.T.) in the manner as follows:

UT (G.M.T.) = Z.T. \pm Z.N. $\frac{W}{F}$

Solved Example (1):

Z.T. was recorded 1720 May 15th; for an observer in DR Long. 29° 20' E. Obtain UT (G.M.T.) at the same moment.

Solution:

Solved Example (2):

Z.T. was recorded 2040 Aug. 20th ; for an observer in DR Long. 171° 05` W. Obtain UT (G.M.T.) at the same moment. Solution:

Solved Example (3):

Z.T. was recorded 0519 Jan. 3^{rd} ; for an observer in DR Long. 160° 12' E. Obtain UT (G.M.T.) at the same moment. Solution:

Z.T.	0519 Jan. 3rd
Z.N. (-)	11
UT(G.M.T.)	1819 Jan. 2 nd

Standard Time:

- Standard time is a modified type of zone time which has been established throughout the world. So that wherever possible, the same time is kept in the same country.
- Standard time differs from zone time only in the fact that the boundaries of the country or state, not meridians, are the limits of the standard time area.
- A list of standard time kept by all the nations and states of the world is given in the Nautical Almanac tables (pages 262-265).

As an example; India, keeps the standard time denoted (- 5h 30m) i.e. to obtain UT (G.M.T.) you must subtract 5h 30m from the standard time. (See next Page)

262

STANDARD TIMES (Corrected to September 1987)

LIST I-PLACES FAST ON UTC (mainly those EAST OF GREENWICH)

The times given $\$ added to UTC to give Standard Time. below should be \int subtracted from Standard Time to give UTC.

					h	m							h	m
Admiralty Is	lands				10		Djibouti						03	
Afghanistan					04	30								
Albania*					01		Egypt, Ar	ab Rep	ublic o	of			02	
Algeria					01		Equatoria	l Guine	a, Reg	public of			oi	
Amirante Isla	ands				04		Estonia						03	
Andaman Isl	ands				05	30	Ethiopia						03	
Angola					01									
Annobon Isla	and				01		Fernando	Póo					01	
Australia							Fiji						12	
Australian	Capital	Territo	ry*		10		Finland*						02	
New South	1 Wales	*			10		France*						01	
Northern 7	Ferritor	y			09	30	Friendly	Islands					13	
Queenslan	d				10		,						_	
South Aus	tralia*				09	30	Gabon						01	
Tasmania*	·				10		Germany	, East*					01	
Victoria*					10			West ³⁴	*				oı	
Western A	ustralia	*			08		Gibraltar	*					OI	
Austria*					01		Greece*						02	
							Guam						10	
Bahrain					0.2									
Balearic Islar	nds*				01		Holland (The Ne	therla	nds)*			01	
Banaba					TT.	30	Hong Ko	ng					08	
Bangladesh					06	30	Hungary	·					01	
Belgium*					01									
Benin (Daho	mev)				01		India						05	30
Botswana, Ro	epublic	of			02		Indonesia	, Reput	lic of					
Brunei					08		Bali, Ba	ıngka, E	illitor	i, Java,				
Bulgaria*					02		Mad	ura, Sur	natra				07	
Burma					06	30	Flores,	Kalima	ntan,	Lombok	,			
Burundi					02	5-	Sulay	vesi, Su	mba,	Sumbaw	a, Tin	lor	08	
							Aru, Ir	ian Jaya	, Kai,	Molucca	as,			
C P							Tani	mbar					09	
Cameroon Ro	epublic	et of lon	- E		01		Iran						03	30
Caroline Isla	nds, we	st or ion	8. E. 135	~~°	09		Iraq*						03	
	101	Ig. E. 13	S to E. I	50	10		Israel*						02	
	101	Ig. E. 15	E COL	00	11		Italy*						01	
Control Afric	eas	st or long	, E. 160°		12									
Central Afric	an Kep	ublic			01		Ianan						00	

International Date Line:

- Due to the fact that; in zone timekeeping, the zone time increases one hour moving eastward and decreases one hour moving westward; there will be a single central meridian where the time difference along sides is 24-hours, i.e. one complete day.
- This meridian of changing date is the longitude 180°, and known as the International Date Line.
- At the same instant of time, there are two dates on the two sides of this Longitude and therefore one has to change date when crossing the line.

Change dates on a ship underway is done at the midnight following to the crossing according to the following rules:

<u>Rule (1)</u>: For ships sailing easterly, one date is repeated at the midnight following to the crossing.

<u>Rule (2)</u>: For ships sailing westerly, one date is dropped at the midnight following to the crossing.

<u>Note</u>: to avoid errors in determining UT(GMT) and correct date in calculations when crossing international date line, one should continue to reckon longitude above the longitude 180° E (or W) till the following midnight. This exceptional application is illustrated in the next three solved examples.

Solved Example (1)

Assuming that:

The 1st observation of the sun was made in Long. 179° 47` E; at Z.T. 1440 Aug. 7th. And the 2nd observation of the sun was made in Long. 179° 16` W; at Z.T. 1730 Aug. 7th.

Find the UT (G.M.T.) for each observation.

Note:

When obtaining UT (G.M.T.) in the 2nd observation; before midnight; consider the long. 180° 44` E. Solution:

Z.T.1	1440 Aug. 7th		Z.T.2	1730 Aug. 7 th
Z.N. (-)	12		Z.N. (-)	12
UT ₁	0240 Aug. 7 th	-	UT ₂	0530 Aug. 7 th

Solved Example (2)

A vessel steering 140° True, crossed the international date line at about Z.T. 1600 Sept. 15th. Given that Z.N. (- 12), change the date at the following midnight.

Solution:

Since the vessel is sailing easterly; the date at the following midnight will repeated to be Sept. 15th. (Instead of Sept. 16th).

Solved Example (3)

A vessel steering 240° True, crossed the international date line at about Z.T. 1015 May 21^{st} . Given that Z.N. (+ 12), change the date at the following midnight.

Solution:

Since the vessel is sailing westerly; then at the following midnight one day will be dropped and the date will be May 23^{rd} (instead of May 22^{nd}).

Estimated Times of Ship's Departure or Arrival

Navigators need to remember some useful calculations necessary to solve problems of obtaining *Estimated Times of Departure or Arrival and speed.*

These are:

- How to calculate Steaming Time of a ship:
- How to add (subtract) dates:

The following is the procedures required to solve these problems.

How to calculate Steaming Time of a ship:

Steps

- 1. Divide the distance run by speed to get the actual steaming hours.
- 2. Add the hours in hand to actual steaming hours to obtain the total steaming hours.
- 3. Divide the total steaming hours by 24h to convert to days.
- 4. Consider the round figure of days as the complete steaming days; the remainder is a fraction of a day.
- 5. Multiply the remainder fraction of the day by 24h to convert it into hours, minutes and seconds. (Round off to the nearest minute).
- 6. The steaming time : days : hours : minutes is now obtained

Application:

Calculate the total Steaming Time of sailing where:

Total distance runs3050MilesSteaming speed18knotsHours in hand10h

Steps:

3050 ÷ 18			
Actual steaming hours	169.44444h		
Hours in hand	+10		
Total steaming hours	179.4444h		-
5	÷24		
Total days	7.47685d		-
Complete days		\rightarrow	7d
Remainder fraction of day	0.47685d		
	x24		
Fraction of day in hours	11.44444h	\rightarrow	11h 26m 40s
Answer: steaming time 7d: 11h: 27	m		

How to add (subtract) dates:

From Calendar Table page (5) *Nautical Almanac Tables* Proceed as follows;

- Convert the date in question into a day of the year.
- Add (or Subtract) the days in question to the day of the year; you have a new day of the year.
- Convert the new day of the year into a date again.

CALENDAR, 1990

5

DAYS OF	THE	WEEK	AND	DAYS	OF	тне	YEAR

Day	JAN	л .	FE	в.	MA	AR.	AI	PR.	м	AY	JU	INE	յս	LY	AT	IJG.	SE	PT.	0	ст.	N	ov.	D	EC.
of Month	Week	Year	Week	Year	Week	Year	Week	Year	Week	Year	Wcck	Ycar	Week	Ycar	Week	Ycar	Wcek	Year	Wcck	Year	Wcck	Year	Weck	Year
I	M.	1	Th.	32	Th	. 60	Su.	91	Tu.	121	F.	152	Su.	182	W.	213	Sa.	244	M.	274	Th.	305	Sa.	335
2	Tu.	2	F.	33	F.	61	M.	92	W.	122	Sa.	153	M.	183	Th	. 214	Su.	245	Tu	. 275	F.	306	Su.	336
3	W.	3	Sa.	34	Sa.	62	Tu.	93	Th.	123	Su.	154	Tu.	184	F.	215	M.	246	W.	276	Sa.	307	M.	337
4	Th.	4	Su.	35	Su.	63	W.	94	F.	124	M.	155	W.	185	Sa.	216	Tu.	247	Th.	277	Su.	308	Tu.	338
5	F.	5	M.	36	M.	64	Th.	95	Sa.	125	Tu	156	Th	186	Su.	217	W.	248	F.	278	M.	309	W.	339
6	Sa.	6	Tu.	37	Tu.	65	F.	96	Su.	126	W.	157	F.	187	M.	218	Th.	249	Sa.	279	Tu.	310	Th.	340
7	Su.	7	W.	38	W.	66	Sa.	97	M.	127	Th.	158	Sa.	188	Tu.	219	F.	250	Su.	280	W.	311	F.	341
8	M.	8	Th.	39	Th.	.67	Su.	98	Tu.	128	F.	159	Su.	189	W.	220	Sa.	251	M.	281	Th.	312	Sa.	342
9	Tu.	9	F.	40	F.	68	M.	99	W.	129	Sa.	160	M.	190	Th.	221	Su.	252	Tu.	282	F.	313	Su.	343
10	W.	10	Sa.	41	Sa.	69	Tu.	100	Th.	130	Su.	161	Tu.	191	F.	222	M.	253	W.	283	Sa.	314	M.	344
11	Th.	11	Su.	42	Su.	70	W.	101	F.	131	M.	162	W.	192	Sa.	223	Tu.	254	Th.	284	Su.	315	Tu.	345
12	F.	12	M.	43	M.	71	Th.	102	Sa.	132	Tu.	163	Th.	193	Su.	224	W.	255	F.	285	M.	316	W.	346
13	Sa.	13	Tu.	44	Tu.	.72	F.	103	Su.	133	W.	164	F.	194	M.	225	Th.	256	Sa.	286	Tu.	317	Th.	347
14 15 16	M. Tu.	14 15 16	w. Th. F.	45 46 47	W. Th. F.	73 74 75	Sa. Su. M.	104 105 106	M. Tu. W.	134 135 136	Th. F. Sa.	165 166 167	Sa. Su. M.	195 196 197	Tu. W. Th.	226 227 228	F. Sa. Su.	257 258 259	Su. M. Tu.	287 288 289	W. Th. F.	318 319 320	F. Sa. Su.	348 349 350
17	W. 1	17	Sa.	48	Sa.	76	Tu.	107	Th.	137	Su.	168	Tu.	198	F.	229	M.	260	W.	290	Sa.	321	M.	351
18	Th. 1	18	Su.	49	Su.	77	W.	108	F.	138	M.	169	W.	199	Sa.	230	Tu.	261	Th.	291	Su.	322	Tu.	352
19	F. 1	19	M.	50	M.	78	Th.	109	Sa.	139	Tu.	170	Th.	200	Su.	231	W.	262	F.	292	M.	323	W.	353
20	Sa. 1	20	Tu.	51	Tu.	79	F.	110	Su.	140	W.	171	F.	201	M.	232	Th.	263	Sa.	293	Tu.	324	Th.	354
21	Su. 2	21	W.	52	W.	80	Sa.	111	M.	141	Th.	172	Sa.	202	Tu.	233	F.	264	Su.	294	W.	325	F.	355
22	M. 2	22	Th.	53	Th.	81	Su.	112	Tu.	142	F.	173	Su.	203	W.	234	Sa.	265	M.	295	Th.	326	Sa.	356
23	Tu. 2	23	F.	54	F.	82	M.	113	W.	143	Sa.	174	M.	204	Th.	235	Su.	266	Tu.	296	F.	327	Su.	357
24	W. 2	24	Sa.	55	Sa.	83	Tu.	114	Th.	144	Su.	175	Tu.	205	F.	236	M.	267	W.	297	Sa.	328	M.	358
25	Th. 2	25	Su.	56	Su.	84	W.	115	F.	145	M.	176	W.	206	Sa.	237	Tu.	268	Th.	298	Su.	329	Tu.	359
26 27 28 29 30	F. 2 Sa. 2 Su. 7 M. 7 Tu. 7	26 27 28 29 30	М. Ти. ₩.	57 58 59	M. Tu. W. Th. F.	85 86 87 88 89	Th. F. Sa. Su. M.	116 117 118 119 120	Sa. Su. M. Tu. ₩.	146 147 148 149 150	Tu. ₩. Th. F. Sa.	177 178 179 180 181	Th. F. Sa. Su. M.	207 208 209 210 211	Su. M. Tu. W. Th.	238 239 240 241 242	W. Th. F. Sa. Su.	269 270 271 272 273	F. Sa. Su. M. Tu.	299 300 301 302 303	M. Tu. W. Th. F.	330 331 332 333 333 334	W. Th. F. Sa. Su.	360 361 362 363 364
31	W . :	31			Sa.	90			Th.	151	l		Tu.	212	F.	243			W.	304			М.	365

Application (1) Find the number of days between April 24th and May 17th,1984 Answer:

May 17 th	\rightarrow	138	
Apr. 24 th	\rightarrow	115	
Number of days		23 ^d	

Application (2)

Add 19 days to Jun. 27th to find new date.

Jun. 27 th	\rightarrow	179
		+19
Jul. 16 th	\leftarrow	198

Application (3)

Subtract 23 days from Aug. 2nd to find new date.

Aug. 2 nd	\rightarrow	215
-		- 23
Jul. 10 th	~	192

SOLVED EXAMPLE (1)

A vessel is ordered to leave New Westminster at Z.T. Z.T. 1800 Oct. 18th; to arrive to Port Stanley

- Distance apart is calculated to be 6530 Miles.
- Steaming speed is assumed to be 14.5 knots
- Hours to be kept in hand for facing bad weather and unexpected events are 10h.
- Position of Port *New Westminster* (49° 12` N ; 122° 55 W)
- Position of *Port Stanley* (40° 42` S; 145° 23 E).

Calculate the estimated time of arrival (E.T.A.).

ANSWER

Dort A		ZT 1800 Oct 18 th	ZT of departure	1800 Oct 18 th
FOILA		ZN _+ 8	ZN	+8
	Dist.	6530	GD of departure	$0200 \text{ Oct } 19^{\text{th}} \rightarrow 292$
	Speed	14.5 k ⊢ 19d 04 ^h 21 ^m	Steaming□time +	0421 19
	In hand	10 h _	GD of arrival	$0621 \text{ Nov } 7^{\text{th}} \leftarrow 311$
Dort D		ZT ????	ZN (reversed)	10 (+)
FULLD		ZN -10 -	ZT of arrival	1621 Nov 7 th

SOLVED EXAMPLE (2)

A vessel is ordered to leave Port Walter; to arrive to Port Hana Saki at Z.T. Z.T. 1300 May 10th.

- Distance apart is calculated to be 6800 Miles.
- Steaming speed is assumed to be 14.5 knots
- Hours to be kept in hand for facing bad weather and unexpected events are 10h.
- Position of *Port Walter* (56° 23` N ; 134° 40` W)
- Position of *Port Hana Saki* (43° 17` N; 145° 35` E).

Calculate the estimated time of departure (ETD).

ANSWER

ZT of arrival	1300 May 10 th
ZN	10 (-)
GD of arrival	0300 May $10^{\text{th}} \rightarrow 130$
Steaming time (-)	2258 19
GD of departure	0402 Apr 20 th ← 110
ZN (reversed)	9 (-)
ZT of departure	1902 Apr 19 th

SOLVED EXAMPLE (3)

A vessel is ordered to:

Leave *Port Hana Saki* at Z.T. 1315 Apr 19th To arrive to *Port Walter* at Z.T. 1300 May 10th.

- Distance apart is calculated to be 6895 Miles.
- Hours to be kept in hand for facing bad weather and unexpected events are 12h.
- Position of *Port Hana Saki* (43° 17`.0 N; 145° 35`.0 E).
- Position of *Port Walter* (56° 23`.0 N; 134° 40`.0 W).

Calculate the steaming speed?

Answer:

ZT of dep.	1315 Apr 19 th	ZT of Arrival	1300 May 10 th
ZN (-)	10	ZN (+)	9
GD of dep.	0315 Apr 19th	GD of Arrival	2200 May 10th

GD of Arrival GD of departure (-)	2200 May $10^{\text{th}} \rightarrow 0315$ Apr $19^{\text{th}} \rightarrow 0315$	130 109
Interval	1845	21 days
Total steaming hours	(21x24)+(18)+(4	5/60)=522.75h

Total steaming hours	522.75
Hours in hand (-)	12
Actual steaming hours	510.75

Speed = (6895 M / 510.75 h) = 13.5 knots

How to adjust GMT obtained from Chronometer time piece:

The function of the Chronometer is to give accurate time in Greenwich. This is done by adding the error of the Chronometer (+ for slow and – for fast) to its reading as follows:

Chronometer Time \rightarrow	Ch. T.	
Chronometer Error \rightarrow	Ch. E.	
G.M.T.	G.M.T.	

Since the Chronometer dial reads only 12hours (see picture above); we must obtain as a first step the correct hours of time in Greenwich and the correct date. This is done as a guide step as follows:

- 1. Obtain ZT from Marine Watch. (In bridge or chart room).
- 2. Obtain ZN from DR long. on chart.
- 3. Apply the Equation $G.D. = Z.T. \pm Z.N. \frac{W}{E}$;
- 4. Add 12h to G.M.T. if GD > 12h.

Zone Time \rightarrow	Ζ.Τ.	
Zone Number \rightarrow	Z.N.	
Greenwich date	G.D.	

Applications:

Application (1)

The following data were recorded:

- Z.T. 1725 on January15th ; 1990,
- Ship was in D.R. position (31° 15`.0 S; 125° 22`.0 W).
- Ch. Error 02m 56s fast
- Ch. Time 01h 27m 24s

Find the correct GMT.

Answer:

ZT	1725 Jan. 15 th	
ZN	+8	_
GD	0125 Jan. 16 th	-
Ch. Time	01h 27m 24s	
Ch. Error	$02m 56s \rightarrow$	Subtract Ch. Error (fast)
GMT	01h 24m 28s Jan. $16^{\text{th}} \rightarrow$	<i>GD</i> 0125 < 12 <i>h</i>
		GD Jan. 16 th

Application (2)

The following data were recorded:

- Z.T. 2040 on September 13th ; 1990,
- Ship was in D.R. position (29° 30`.0 N; 46° 40`.0 W).
- Ch. Error 05m 14s fast
- Ch. Time 11h 45m 54s

Find the correct GMT.

Answer:

ZT	2040 Sept. 13 th		
ZN	+3		
GD	2340 Sept. 13 th		
Ch. Time	11h 45m 54s		
Ch. Error	05m 14s	\rightarrow	Subtract Ch. Error (fast)
GMT	23h 40m 40s Sept. 13 th	\rightarrow	Add 12h since GD 2340 > 12h
	1		GD Sept. 13^{th}

Application (3)

The following data were recorded:

- Z.T. 1725 on January15th ; 1990,
- Ship was in D.R. position (31° 15`.0 S; 125° 22`.0 W).
- Ch. Error 02m 56s *slow*
- Ch. Time 01h 27m 24s

Find the correct GMT.

Answer:

ZT	1725 Jan. 15 th	
ZN	+8	
GD	0125 Jan. 16 th	
Ch. Time	01h 27m 24s	
Ch. Error	$02m 56s \rightarrow$	Subtract Ch. Error (slow)
GMT	01h 30m 20s Jan. $16^{\text{th}} \rightarrow$	$GD \ 0125 < 12h$
		GD Jan. 16^{th}

Application (4)

The following data were recorded:

- Z.T. 1725 on January 16th ; 1990,
- Ship was in D.R. position (31° 15`.0 S; 125° 22`.0 E).
- Ch. Error 02m 56s *slow*
- Ch. Time 09h 27m 24s

Find the correct GMT.

Answer:

ZT	1725 Jan. 16 th	
ZN	-8	
GD	0925 Jan. 16 th	
Ch. Time	09h 27m 24s	
Ch. Error	$02m 56s \rightarrow$	_ Subtract Ch. Error (slow)
GMT	09h 30m 20s Jan. $16^{\text{th}} \rightarrow$	$GD \ 0925 < 12h$
		GD Jan. 16 th

Nautical Almanac Tables

1- Object

The object of this Almanac is to provide, in a convenient form, the data required for the practice of celestial navigation at sea.

2- Principles

The main contents of the almanac consist of data from which the Greenwich Hour Angle (GHA) and Declination (Dec.) of all the bodies used for navigation can be obtained for any instant of Greenwich Mean Time (GMT), the Local Hour Angle (LHA) can then be obtained by means of the formula:

L.H.A = G.H.A
$$\pm$$
 longitude $\frac{E}{W}$

The remaining data consist of:

Times of rising and setting of the sun and moon and times of twilight; miscellaneous calendar and planning data and auxiliary tables, including a list of standard times; corrections to be applied to observed altitude. For the sun, moon and planets the GHA and Dec. are tabulated directly for each hour of (UT) GMT throughout the year. For the stars the Sidereal Hour Angle (SHA) is given, and the GHA is obtained from:

G.H.Astar = G.H.AAries + S.H.Astar

The SHA and Dec. of the stars change slowly and may be regarded as constant over periods of several days. GHA (Aries) is tabulated for each hour. Permanent tables give the appropriate increments and corrections to the tabulated hourly values of GHA and Dec. for the minutes and seconds of UT (GMT).

56	m			IN	CREME	NTS AN	DC	ORRE	CTION	IS	-		57
56	SUN PLANETS	ARIES	MOON	or Corr	or Corr*	or Corr*	57	SUN PLANETS	ARIES	MOON	or Corr*	or Corr*	er Corra
00	14 00-0	14 02-3	13 21-7	•• ••	6-0 5-7	2-0 11-3	00	14 15-0	14 17-3	13 36-1	e-e 0-0	+0 58	¥⇒ 115
02	14 00-3	14 02-6 14 02-8	13 22-0	0-1 0-1	6-1 5-7	24 114	02	14 15-3	14 17-6	13 36-3	0-1 D-1 0-2 D-2	41 58 42 59	24 11-6
04	14 00-8	14 03-3	13 22-7	04 04	64 60	24 11-7	04	14 15-6	14 18-1	13 37-0	64 64	6-3 6-1 6-4 6-1	24 114
55	14 13-6	14 16-1	13 34-9	\$-5 5-2	11-5 10-8	12-5 165	55	14 28-8	14 31-1	13 49-2	54 53	11-5 110	17-5 16-8
56 57	14 14-0 14 14-3	14 16-3 14 16-6	13 35-1 13 35-3	54 5-3 5-7 5-4	11-6 10-9 11-7 11-0	17-6 16-6	56	14 29-0 14 29-3	14 314	13 494 13 49-7	54 54 517 55	11-4 11-1 11-7 11-2	17-4 16-9
58 59	14 14-5 14 14-8	14 16-8 14 17-1	13 35-6 13 35-8	54 55 54 56	114 11-1 11-9 11-2	17-8 16-8 17-9 16-9	58 59	14 29-5 14 29-8	14 31-9 14 32-1	13 49-9 13 50-1	54 56 54 57	114 113 114 114	17-8 17-1 17-9 17-2
60	14 15-0	14 17-3	13 36-1	6-0 5-7	12-0 11-3	18-0 17-0	60	14 30-0	14 32-4	13 50-4	6-0 5-8	12-0 11-5	18-0 17-3
						XX	*						

98

Main Data

- 3- Daily Pages
- The daily pages give the GHA of Aries; the GHA and Dec. of the sun, moon and the four navigational planets, for each hour of GMT.
- For the moon, values "v", "d" is also tabulated for each hour to facilitate the correction of GHA and Dec. to intermediate times; "v", "d" for the sun and planets change so slowly that they are given at the foot of the appropriate columns, once only on the page; "v" is zero for Aries and negligible for the sun, and is omitted.
- The SHA and Dec. of the 57 selected stars, arranged in alphabetical order of proper name, are also given.
 - 4- Increments and Corrections

These tables, printed on tinted paper (pages ii-xxxi) at the back of the Almanac, provide the increments and corrections for minutes and seconds to be applied to the hourly values of GHA and Dec. They consist of sixty tables, one for each minute separated into two parts:

- a) Increments to GHA for sun and planets; Aries and Moon for every minute and second;
- b) For each minute, corrections to be applied to GHA and Dec. corresponding to the values of "v" and "d" given on the daily pages.

46	-	INCREMENTS AND CORRECTIONS										47								
46	SUN PLANETS	ARIES	MOON	. 8 4	Corr*	or c	iorr*	8 (4	Corr*		47	SUN PLANETS	ARIES	MOON	or (Corr*	8 67 (4	Corr*	8 G	Corr*
,	• •	• •	• •					,	,	1	—	• •	• •	• •	,	,	,	,		,
00	11 30-0	11 31 9	10 58-6	0-0	0-0	6-0	4-7	12-0	9-3	L	00	11 45-0	11 46-9	11 12-9	0-0	0-0	6-0	4-8	12-0	9.5
01	11 30-3	11 32-1	10 58-8	0-1	0-1	6-1	4-7	12-1	94	L	01	11 45-3	11 47-2	11 13-1	0-1	0-1	4-1	4-8	12-1	96
02	11 30-5	11 32-4	10 59-0	0-2	0-2	6-2	4-8	12-2	95	L	02	11 45-5	11 47-4	11 134	0-2	0-2	6-2	44	12-2	9-7
03	11 30-8	11 32-6	10 59-3	0-3	0-2	6-3	44	12-3	9.5	L	03	11 45-8	11 47-7	11 13-6	0-3	0-2	6-3	5-0	12-3	9-7
04	11 31-0	11 324	10 59-5	04	0-3	6-4	5-0	12-4	96		04	11 46-0	11 47-9	11 13-8	0-4	0-3		5-1	12-4	9-8
05	11 31-3	11 33-1	10 59-8	0-5	04	6-5	50	12-5	9-7	L	05	11 46-3	11 48-2	11 14-1	0-5	04	+-5	5-1	12-5	9.4
06	11 31-5	11 33-4	11 00-0	0-6	0-5		5-1	12-0	9-8	L	06	11 46-5	11 48-4	11 14-3	0-4	0.5		5.2	12-4	10-0
07	11 31-8	11 33-6	11 00-2	0-7	0-5	6-7	5-2	12-7	9-8		07	11 46-8	11 48-7	11 14-6	0-7	0.6	4-7	5-3	12-7	10-1
08	11 32-0	11 33-9	11 00-5	0-4	0-6	64	5-3	12-4	94		06	11 47-0	11 48-9	11 14-8	0-4	0-6	.4	54	12-4	10-1

The increments are based on the following adopted hourly rates of increase of the GHA:

- Sun and Planets; 15° 00.0 precisely,
- Aries; 15° 2`.464
- Moon 14° 19`.0

The values of "v" on the daily pages are the excesses of the actual hourly motions over the adopted values; they are generally positive, except for Venus in some cases.

Actual	l Rate of	^r Change o	f SHA of	Celestial	Bodies
--------	-----------	-----------------------	----------	-----------	--------

Stars	15° 02`.464			Fixed
Sun	15° 00`.0			Fixed
Moon	14° 19`.0	\rightarrow	14° 43`.5	Variable
Venus	14° 59`.0	\rightarrow	15° 05`.0	Variable
Mars	15° 00`.0	\rightarrow	15° 04`.0	Variable
Jupiter & Saturn	15° 02`.0	\rightarrow	15° 03`.4	Variable

The tabulated hourly values of the sun's GHA have been adjusted to reduce to a minimum the error caused by treating "v" as negligible.

```
Actual Rate of change of G.H.A. = Theoretical Rate \begin{cases} 15^{\circ} for planets \\ 14^{\circ} 19^{\circ}.0 for Moon \end{cases} + v
```

The values of (d) in the daily pages are the hourly differences of the Dec. For the Moon, the true values of (v) and (d) are given for each hour; otherwise mean values are given for three days on the page.

5- Method of Entry

The UT of an observation is expressed as a day and hour, followed by a number of minutes and seconds. The tabular values of GHA and, Dec. and where necessary, the corresponding values of "v" and "d", are taken directly from the daily pages for the day and hour of UT; this hour is always before the time of observation. SHA and Dec. of the selected stars are also taken from the daily pages.

The table of increments and corrections for the minute of UT is then selected. For the GHA, the increment for minutes and seconds is taken from the appropriate column opposite the seconds of UT (GMT).

The v-correction is taken from the second part of the same table opposite the value of "v" as given on the daily pages. Both increment and *v-correction* are to be added to the GHA, except for <u>Venus</u> when "v" is prefixed by a minus sign and the v-correction is to be subtracted.

For the Dec. there is no increment, but a *d*-correction is applied in the same way as the v-correction; "d" is given without sign on the daily pages and the sign of the correction is to be supplied by inspection of the Dec column. In many cases the correction may be applied mentally.

92			1990 MA	1 4,	5, 6 (FF	RI., S	AT., SU	N.)				
UT	ARIES	VENUS -4.	MARS -	-0.8	JUPITER	-2.0	SATURN	+0.5	5	TARS		
40018385	G.H.A. 221 37.3 236 39.8 251 42.2 266 44.7 281 47.1 296 49.6	G.H.A. Dec. 221 15.4 5 1 17.5 236 15.3 16.5 251 15.1 15.5 266 15.0 - 14.5 281 14.8 13.5 296 14.7 12.5	G.H.A. D 239 41.3 5 9 254 42.0 269 42.7 284 43.4 299 44.1 314 44.8	23.4 22.7 22.1 21.4 20.7 20.0	G.H.A. 123 29.8 N2 136 31.8 153 33.8 168 35.8 168 35.8 168 37.8 198 39.8	Det. 21.5 21.5 21.5 21.5 21.5 21.5 21.4 21.4	G.H.A. 284 21.3 5 299 23.8 314 26.2 329 28.7 344 31.2 359 33.6	Dec. , 54.5 20 54.5 54.5 54.5 54.5 54.5 54.5 54.5	Nome Acomor Achernor Acrux Adhoro Aldeboron	5.H.A. 315 31.8 335 39.9 173 28.6 255 26.4 291 09.6	Dec S40 2 S57 1 S63 0 S28 5 N16 2	0.5
06 07 08 F 09 R 10	311 52.1 326 54.5 341 57.0 356 59.5 12 01.9 27 04.4	311 14.5 5 1 11.5 326 14.3 10.5 341 14.2 09.5 356 14.0 - 08.5 11 13.9 07.5 26 13.7 06.5	329 45.5 5 9 344 46.2 359 46.9 14 47.6 29 48.3 44 49.0	19.3 18.7 18.0 17.3 16.6 15.9	213 41.8 N2 228 43.8 243 45.8 258 47.8 273 49.7 288 51.7	21.4 21.4 21.4 21.3 21.3 21.3 21.3	14 36.1 5 29 38.6 44 41.0 59 43.5 74 45.9 89 48.4	20 54.5 54.5 54.5 54.5 54.5 54.5 54.5	Alioth Alkaid Al Na'ir Alnilam Alphard	166 35.1 153 11.9 28 05.4 276 04.2 218 13.1	N56 0 N49 2 S47 0 5 1 1 5 8 3	0.7 1.6 0.3 2.4 7.1
121314151617	42 06.9 57 09.3 72 11.8 87 14.3 102 16.7 117 19.2	41 13.6 5 1 05.3 56 13.4 04.3 71 13.3 03.3 86 13.1 02.9 101 13.0 01.9 116 12.8 1 00.9	59 49,7 5 9 74 50,4 89 51,1 104 51,9 119 52,6 134 53,3	15.3 14.6 13.9 13.2 12.5 11.9	303 53.7 N2 318 55.7 333 57.7 348 59.7 - 4 01.7 19 03.7	21.3 21.2 21.2 21.2 21.2 21.2 21.2 21.2	104 50.9 5 119 53.3 134 55.8 149 58.2 165 00.7 160 03.2	20 545 545 545 545 545 545 545	Alphecco Alpherotz Altoir Ankoo Antores	126 25.3 358 01.8 62 25.0 353 32.9 112 47.3	N26 4 N29 0 N 8 5 S42 2 S26 2	4.6
19 20 21 22 23	132 21.6 147 24.1 162 26.6 177 29.0 192 31.5 207 34.0	131 12.6 5 0 593 146 12.5 583 161 12.3 573 176 12.2 - 563 191 12.0 553 206 11.9 543	144 54.0 5 4 164 54.7 179 55.4 194 56.1 209 56.8 224 57.5	10.5 09.8 09.1 08.5 07.8	34 05.7 N2 49 07.7 64 09.7 79 11.6 94 13.6 109 15.6	21.1 21.1 21.1 21.1 21.1 21.1 21.1 21.0	195 05.6 3 210 08.1 225 10.6 240 13.0 255 15.5 270 17.9	945 945 945 945 945 945 945	Arcturus Atria Avior Bellatrix Betelgeuse	146 11.2 108 04.3 234 25.4 278 50.9 271 20.3	N19 1 569 0 559 2 N 6 2 N 7 2	3.8
50000000	222 36.4 237 38.9 252 41.4 267 43.8 282 46.3 297 48.8	221 11.7 5 0 533 236 11.6 523 251 11.4 51.9 266 11.2 · · 50.9 281 11.1 49.9 296 10.9 48.9	254 58.9 269 59.6 285 00.3 · · 300 01.0 315 01.7	06.4 05.7 05.1 04.4 03.7	124 17.5 NJ 139 19.6 154 21.6 169 23.6 184 25.6 199 27.6	21.0 21.0 21.0 20.9 20.9 20.9	215 20.4 3 300 22.9 315 25.3 330 27.8 345 30.3 0 32.7	54.5 54.5 54.5 54.5 54.5 54.5 54.5	Canapus Capella Deneb Denebala Diphda	281 00.5 49 43.4 182 51.1 349 13.5	552 4 N45 5 N45 1 N14 3 S18 0	12.5
S 4 10 11	312 512 327 53.7 342 561 357 58.6 13 011 28 03.5	311 10.8 5 0 47. 326 10.6 46. 341 10.5 45.5 356 10.3 - 44.5 11 10.1 43.5 26 10.0 42.5	330 02.5 5 9 345 03.2 0 03.9 15 04.6 30 05.3 9 45 06.0 8	03.0 02.3 01.6 01.0 00.3 59.6	214 243 NJ 229 315 244 33.5 259 35.5 274 37.5 289 39.5	20.9 20.9 20.8 20.8 20.8 20.8 20.8	15 35.2 30 37.7 45 40.1 60 42.6 75 45.1 90 47.5	545 545 545 545 545 545	Dubhe Einath Eltanin Enil Fomalhaut	194 12.2 278 34.9 90 53.8 34 04.2 15 43.1	N51 4 N28 3 N51 2 N 9 4 S29 4	8.3 16.1 19.1 19.7 10.3
K D A Y 15	43 06.0 58 08.5 73 10.9 88 13.4 103 15.9 118 18.3	41 09.8 5 0 41.1 56 09.7 40.1 71 09.5 39.1 86 09.4 38.1 101 09.2 37.1 116 09.0 36.1	60 06.7 S 8 75 07.4 90 08.1 105 08.8 · · · 120 09.5 135 10.2	58.9 58.2 57.5 56.9 56.2 55.5	304 41.5 N 319 43.5 334 45.4 349 47.4 4 49.4 19 51.4	23 20.8 20.7 20.7 20.7 20.7 20.7 20.6	105 50.0 120 52.5 135 54.9 150 57.4 165 59.8 181 02.3	520 54.5 54.6 54.6 54.6 54.6 54.6	Giocrux Gienah Hadar Hamol Kaus Aust.	172 20.1 176 10.0 149 12.2 328 20.8 84 06.5	557 0 517 2 560 1 N23 2 534 2	13.9 19.5 19.9 15.0 13.4
18 19 20 21 22 23	133 20.8 148 23.2 163 25.7 178 28.2 193 30.6 208 33.1	131 08.9 S 0 35. 146 08.7 34. 161 08.6 33. 176 08.4 32. 191 08.2 31. 206 08.1 30.	150 11.0 5 8 165 11.7 180 12.4 195 13.1 210 13.8 225 14.5	54.8 54.1 53.4 52.8 52.1 51.4	34 53.4 N 49 55.4 64 57.4 79 59.3 95 01.3 110 03.3	23 20.6 20.6 20.6 20.6 20.5 20.5	196 04.8 211 07.3 226 09.7 241 12.2 256 14.7 271 17.1	520 54.6 54.6 54.6 54.6 54.6 54.6	Kochab Markab Menkar Menkent Miaplacidus	137 17.7 13 55.8 314 33.5 148 27.8 221 43.6	N74 1 N15 0 N 4 0 S36 1 S69 4	11.8 19.1 19.2 19.4
600 02 03 05	223 35.6 238 38.0 253 40.5 268 43.0 283 45.4 298 47.9	221 07.9 5 0 29. 236 07.8 28. 251 07.6 27. 266 07.5 · · 26. 281 07.3 25. 296 07.1 24.	4 240 15.2 S 8 4 255 15.9 4 270 16.6 4 285 17.3 · · 4 300 18.1 4 315 18.8	50.7 50.0 49.3 48.7 48.0 47.3	125 05.3 % 140 07.3 155 09.3 170 11.3 · 185 13.2 200 15.2	23 20.5 20.5 20.4 20.4 20.4 20.4 20.4	286 19.6 301 22.1 316 24.5 331 27.0 346 29.5 1 31.9	520 54.6 54.6 54.6 54.6 54.6 54.6	Mirfak Nunki Peacock Pollux Procyon	309 05.9 76 19.6 53 46.2 243 49.0 245 18.0	N49 4 526 1 556 4 N28 0 N 5 1	19.7 18.4 15.8 15.0
06 07 08 5 09 0 10 N 11	313 50.4 328 52.8 343 55.3 358 57.7 14 00.2 29 02.7	311 07.0 5 0 23/ 326 06.8 22/ 341 06.7 21. 356 06.5 · · 20. 11 06.3 19, 26 06.2 18.	4 330 19.5 5 4 4 345 20.2 0 20.9 15 21.6 · · 3 30 22.3 0 45 23.0	46.6 45.9 45.2 44.6 43.9 43.2	215 17.2 N 230 19.2 245 21.2 260 23.2 275 25.1 290 27.1	23 20.3 20.3 20.3 20.3 20.3 20.3 20.3	16 34.4 31 36.9 46 39.3 61 41.8 76 44.3 91, 46.7	520 54.6 54.6 54.6 54.6 54.6 54.6	Rasalhague Regulus Rigel Rigil Kent. Sabik	96 22.3 208 01.8 281 29.0 140 15.0 102 32.2	N12 3 N12 0 5 8 1 560 4 515 4	13.7 10.8 12.7 47.9 43.0
D 12 A 13 Y 14 15 16 17	44 05.1 59 07.6 74 10.1 89 12.5 104 15.0 119 17.5	41 06.0 5 0 17. 56 05.9 16. 71 05.7 15. 86 05.5 - 14. 101 05.4 13. 116 05.2 12.	60 23.7 5 1 3 75 24.4 90 25.2 3 105 25.9 3 120 26.6 3 135 27.3	42.5 41.8 41.1 40.4 39.8 39.1	305 29.1 N 320 31.1 335 33.1 350 35.1 - 5 37.0 20 39.0	23 20.2 20.2 20.2 20.2 20.1 20.1 20.1	106 49.2 121 51.7 136 54.2 151 56.6 166 59.1 182 01.6	520 54.6 54.6 54.6 54.6 54.6 54.7	Schedar Shaula Sirius Spico Suhail	350 01.1 95 45.2 258 49.2 158 49.3 223 05.3	N56 2 537 0 516 4 511 0 543 2	28.1 05.1 42.1 06.1 23.1
18 19 20 21 22	134 19.9 149 22.4 164 24.9 179 27.3 194 29.8	131 05.0 5 0 11. 146 04.9 10. 161 04.7 09. 176 04.6 · · 08. 191 04.4 07.	2 150 28.0 5 1 2 165 28.7 2 180 29.4 2 195 30.1 · · 2 210 30.9	8 38.4 37.7 37.0 36.3 35.6	35 41.0 N 50 43.0 65 45.0 80 46.9 95 48.9	23 20.1 20.1 20.0 20.0 20.0 20.0	197 04.0 212 06.5 227 09.0 242 11.5 257 13.9	520 54.7 54.7 54.7 54.7 54.7 54.7	Vego Zuben'ubi Venus	80 50.5 137 24.4 5.H.A. 358 35.3	N38 516 Mar. 1	46.1 00.4 Fem 15
Mar. Po	ns. 9 08.1	v-0.2 d 1	0 0 0.7 0	1 0.7	U 2.0	d 0.0	U 2.5	d 0.0	Jupiter Saturn	261 41.1 62 44.0	15	41 58

Solved Example (1)

Given:

- UT (GMT) 20h 22m 11s Jun. 24th; 1990.
- D.R. Longitude 141° 22`.3 E
- Calculate: L.H.A. & Dec of the Star Antares.

126

Solution

1990 JUNE 24, 25, 26 (SUN., MON., TUES.)

UT	ARIES	VENUS -3.9	MARS +0.3	JUPITER - 1.8	SATURN +0.2	STARS
(GMT) d h	G.H.A.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dec.
24 00 01 02 03 04 05	271 53.4 286 55.8 301 58.3 317 00.8 332 03.2 347 05.7	214 54.6 N18 11.2 229 54.0 11.9 244 53.5 12.7 259 52.9 • 13.4 274 52.3 14.1 289 51.8 14.8	255 20.5 N 4 50.9 270 21.4 51.5 285 22.2 52.2 300 23.0 • 52.8 315 23.8 53.5 330 24.6 54.2	162 37.7 N22 27.6 177 39.6 27.6 192 41.4 27.5 207 43.3 27.4 222 45.2 27.4 237 47.1 27.3	336 33.1 S21 17.6 351 35.7 17.6 6 38.3 17.7 21 41.0 •• 17.7 36 43.6 17.7 51 46.3 17.8	Acamar 315 31.6 S40 20.3 Achernar 335 39.5 S57 16.7 Acrux 173 28.9 S63 03.2 Adhara 255 26.5 S28 57.5 Aldebaran 291 09.5 N16 29.5
06 07 08 5 09 U 10 N 11	2 08.2 17 10.6 32 13.1 47 15.6 62 18.0 77 20.5	304 51.2 N18 15.5 319 50.7 16.2 334 50.1 16.9 349 49.5 · 17.6 4 49.0 18.3 19 48.4 19.0	345 25.5 N 4 54.8 0 26.3 55.5 15 27.1 56.2 30 27.9 • 56.8 45 28.7 57.5 60 29.6 58.2	252 48.9 N22 27.2 267 50.8 27.1 282 52.7 27.1 297 54.5 · 27.0 312 56.4 26.9 327 58.3 26.9	66 48.9 521 17.8 81 51.5 17.8 96 54.2 17.9 111 56.8 • 17.9 126 59.5 17.9 142 02.1 17.9	Alioth 166 35.4 N56 00.9 Alkaid 153 12.0 N49 21.8 Al Na'ir 28 04.9 S47 00.2 Alnilam 276 04.2 S 1 1.2.3 Alphard 218 13.2 S 8 37.1
D 12 A 13 Y 14 15 16	92 22.9 107 25.4 122 27.9 137 30.3 152 32.8 167 35.3	34 47.8 N18 19.7 49 47.3 20.4 64 46.7 21.1 79 46.2 · 21.8 94 45.6 22.5 109 45.0 23.2	75 30.4 N 4 58.8 90 31.2 4 59.5 105 32.0 5 00.2 120 32.8 · 00.8 135 33.7 01.5 150 34.5 02.1	343 00.2 N22 26.8 358 02.0 26.7 13 03.9 26.7 28 05.8 · 26.6 43 07.6 26.5 58 09.5 26.5	157 04.7 S21 18.0 172 07.4 18.0 187 10.0 18.0 202 12.7 · · 18.1 217 15.3 18.1 232 17.9 18.1	Alphecca 126 25.2 N26 44.8 Alpheratz 358 01.4 N29 02.2 Altair 62 24.7 N 8 50.5 Abbra 353 32.5 542 11 Antares 112 47.1 S26 24.9
18 19 20 21 22 23	182 37.7 197 40 2 212 42.7 227 45.1 242 47.6 257 50.0	124 44.5 N18 23.9 139 43.9 24.6 154 43.3 25.3 169 42.8 • 26.0 184 42.2 26.7 199 41.6 27.3	165 35.3 N 5 02.1 165 35.3 N 5 02.8 180 36.1 03.5 03.5 195 36.9 04.1 04.1 210 37.8 • 04.8 225 38.6 05.5 240 39.4 C6.1	73 11.4 N22 26.4 88 13.3 26.3 26.3 26.1 26.2 2118 17.0 ~ 26.2 2133 18.9 26.1 148 20.7 26.0	247 20.6 S21 18.2 262 23.2 18.2 277 277 25.9 18.2 292 292 28.5 • 18.3 307 31.1 18.3 322 33.8 18.3	Arcturus 146 11.2 N19 13.9 Atria 108 04.0 S69 00.9 Avior 234 25.8 S59 28.9 Bellotrix 278 50.8 N 6 20.6 Betelgeuse 271 20.3 N 7 24.4
25 00	272 52.5	214 41.1 N18 28.0	255 40.2 N 5 06.8	163 22.6 N22 26.0	337 36.4 S21 18.4	Canopus 264 04.4 552 41.3

GHAY	212 42.7	
Incr. Y	5 33.7	
SHA*	112 47.1	Dec. <u>26 24.9 S</u>
GHA*	331 03.5	-
±Long E/W	141 22.3	
LHA*	472 25.8	-
	<u>112 25.8</u>	

Solved Example (2) Given:

• UT (GMT) 23h 35m 40s Sept. 1st; 1990.

• D.R. Longitude 46° 33`.5 W

Calculate : L.H.A. & Dec of the Planet Venus

Solution

172	1990	SEPTEMBER	1, 2, 3 (SAT	, SUN., MOI	N.)
UT ARIES	VENUS)-3.9	MARS -0.4	JUPITER -1.9	SATURN +0.3	STARS
G.H.A.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	G.H.A. Dec.	Name S.H.A. Dec.
1 00 339 54.0	195 01.6 N15 04.8	281 25.9 N18 30.8	214 42.1 N19 50.0	49 13.2 S22 04.6	Acamar 315 31.0 \$40 20.1
01 354 56.4	210 01.0 03.9	296 27.1 31.1	229 44.1 49.9	64 15.7 04.6	Achemar 335 38.8 \$57 16.6
02 9 58.9	225 00.5 02.9	311 28.2 31.4	244 46.0 49.7	79 18.3 04.6	Acrux 173 29.4 563 03.0
04 40 03.8	254 59.3 01.1	341 30.6 32.0	274 49.9 49.5	109 23.4 04.7	Adadra 255 26.2 526 57.2 Aldebaran 291 09.0 N16 29.6
05 55 06.3	269 58.7 15 00.1	356 31.8 32.3	289 51.8 49.4	124 26.0 04.7	
06 70 08.7	284 58.2 N14 59.2	11 33.0 N18 32.6	304 53.8 N19 49.3	139 28.5 S22 04.7	Alioth 166 35.8 N56 00.7
07 85 11.2	299 57.6 58.2	26 34.2 32.9	319 55.7 49.2	154 31.1 04.7	Alkaid 153 12.4 N49 21.7
5 08 100 13.7 A 09 115 16 1	319 57.0 57.3	41 35.4 33.2	334 57.7 49.1	169 33.6 04.7	Al No ir 28 04.4 547 00.3
T 10 130 18.6	344 55.9 55.4	71 37.8 33.7	5 01.5 48.9	199 38.7 04.8	Alphard 218 13.2 S 8 37.0
U 11 145 21.1	359 55.3 54.5	86 39.0 34.0	20 03.5 48.7	214 41.3 04.8	
R 12 160 23.5	14 54.7 N14 53.5	101 40.2 N18 34.3	35 05.4 N19 48.6	229 43.9 S22 04.8	Alphecca 126 25.5 N26 44.9
13 175 26.0	29 54.2 52.6	116 41.4 34.6	50 07.4 48.5	244 46.4 04.8	Alpheratz 358 00.9 N29 02.5
Y 15 205 30.9	44 53.6 51.7 59 53.0 · · 50.7	146 43 8 + 35 2	80 11 3 . 48 3	274 51 5 + + 04.8	Antoir 62 24.6 N 8 50.7
16 220 33.4	74 52.4 49.8	161 45.1 35.5	95 13.2 48.2	289 54.1 04.9	Antares 112 47.2 526 24.9
17 235 35.8	89 51.9 48.8	176 46.3 35.8	110 15.2 48.1	304 56.6 04.9	
18 250 38.3	104 51.3 N14 47.9	191 47.5 N18 36.1	125 17.1 N19 48.0	319 59.2 S22 04.9	Arcturus 146 11.4 N19 13.9
19 265 40.8	119 50.7 46.9	206 48.7 36.3	140 19.0 47.9	335 01.7 04.9	Atria 108 04.5 569 01.1
21 295 45.7	149 49.6 · · 45.0	236 51.1 · · 36.9	170 22.9 · · 47.6	5 06.8 · · 04.9	Bellatrix 278 50.4 N 6 20.7
22 310 48.2	164 49.0 44.1	251 52.3 37.2	185 24.9 47.5	20 09.4 04.9	Betelgeuse 271 19.9 N 7 24.5
23 325 50.6	179 48.5 43.1	266 53.5 37.5	200 26.8 47.4	35 12.0 05.0	
200 340 53.1	194 47.9 N14 42.2	281 54.7 N18 37.8	215 28.8 N19 47.3	50 14.5 522 05.0	Canopus 264 04.0 552 41.0
N . 1		·			
0 12 162 21.8	14 27.8 N14 07.5	102 38.6 N18 48.0	36 38.9 N19 43.3	231 46.3 S22 05.5	Schedar 349 59.8 N56 29.2
Y 14 192 267	44 26 7 05.6	117 59.8 40.5	66 42.8 43.1	240 40.9 05.5	Sirius 258 48.9 516 41.9
15 207 29.2	59 26.1 · · 04.6	147 42.3 · · 48.8	81 44.8 · · 43.0	276 54.0 · · 05.6	Spico 158 49.5 S11 06.8
16 222 31.7	74 25.6 03.6	162 43.5 49.1	96 46.7 42.9	291 56.5 05.6	Suhail 223 05.5 S43 23.5
17 237 34.1	89 25.0 02.6	177 44.7 49.4	111 48.7 42.8	306 59.0 05.6	
18 252 36.6	104 24.5 N14 01.7	192 46.0 N18 49.7	126 50.6 N19 42.7	322 01.6 522 05.6	Vega 80 50.3 N38 46.7 7ubaa'ubi 137 245 516 00.3
20 282 41.5	134 23.4 13 59.7	222 48.4 50.2	156 54.5 42.5	352 06.7 05.6	SHA Mar Paul
21 297 44.0	149 22.8 · · 58.7	237 49.7 · · 50.5	171 56.5 · · 42.4	7 09.2 · · 05.6	• / h m
22 312 46.4	164 22.3 57.7	252 50.9 50.8	186 58.4 42.2	22 11.8 05.7	Venus 213 54.8 11 01
23 327 48.9	1/9 24 2008	26/ 52.1 51.0	202 00.4 42.1	57 14.3 05.7	Mars 301 01.6 5 12 Jupiter 234 35.7 9 37
Mer. Pass. 1 16.3	(v - 0.6 d 1.0	v 1.2 d 0.3	U 1.9 d 0.1	v 2.6 d 0.0	Saturn 69 21.4 20 36

GHA	179 48.5	Dec.	14 43.1 N
Incr.	8 55.0	d. Coor ⁿ	00.6
v. Coor ⁿ	(-)0 0.4	C. Dec.	14 42.5 N
GHA	188 43.1		
I amon D/IV	16 22 5	0 (
±Long E/W	46 33.5	v - 0.6	

Solved Example (3)

Given:

- UT (GMT) 00h 44m 53s May. 13th 1990.
- D.R. Longitude 143° 00`.0 E
- Calculate : L.H.A. & Dec of the Sun.

Solution

			199	0 M	AY 13	, 14	, 1	5 (S	UN.,	MON	., TUE	S.)			95
UT	SI	И		M	OON		Τ	Lat.	Twil Naut.	ight Civil	Sunrise	13	Moo 14	nrise 15	16
	G.H.A.	Dec.	G.H.A.	v ,	Dec.	<i>d</i> н	.P. /	N 72	" ["	۶. m	۸ m	b m	h m	h m	h_m
13 00 02 03 04 05	180 55.5 195 55.5 210 55.5 225 55.5 240 55.5 255 55 5	17.2 17.8 18.4	324 02.4 338 31.3 353 00.2 7 29.2 21 58.1 36 27 0	9.9 9.9 10.0 9.9 9.9	526 52.2 26 50.9 26 49.6 26 48.1 26 46.5 26 44.7	1.3 54 1.3 54 1.5 54 1.6 54 1.8 54	4.4 4.4 1.4 1.4	N 70 68 64 64		//// //// 01 17 01 57	00 57 01 54 02 27 02 51 03 10	01 18	02 40 01 37	03 04 02 14 01 43	04 00 03 03 02 28 02 03 01 44
06 07 08 S 09 U 10	270 55.5 285 55.6 300 55.6 315 55.6 330 55.6	N18 19.7 20.3 20.9 21.5 22.2	50 56.0 65 24.9 79 53.9 94 22.8	9.9 10.0 9.9 10.0	S26 42.8 26 40.8 26 38.7 26 36.4 26 33.9	2.0 54 2.1 54 2.3 54 2.5 54	1.4	N 58 56 54 52	01 09 01 45 02 10 02 29 02 45	02 23 02 44 03 00 03 14 03 26 03 37	03 25 03 38 03 50 03 59 04 08	00 02 24 18 24 01 23 47	00 38 00 18 00 01 24 18	01 19 01 00 00 44 00 30 00 18	01 27 01 14 01 02 00 51 00 42
2	120 55.5	57.6	244 05.1	11.7	20 28.5	9.5 5 9.7 5	5.7	Day	00 *	12 *	Pass.	Upper	Lower	Age	Phase
2	\$.D. 15.8	d 0.6	273 06.7 s.D.	11.8	20 09.5	9.8 5 1	5.7 5.1	13 14 15	m 3 03 42 03 43 03 43	03 42 03 43 03 42	11 56 11 56 11 56	02 29 03 20 04 10	14 55 15 46 16 35	8 18 19 20	0

G.H.A.	180 55.5
Incr.	11 13.3
G.H.A.	192 08.8
±Long E/W	143 00.0
L.H.A.	335 08.8

.

Dec.	18 16.0 N
d Correc.(+)	0.4
C. Dec.	18 16.4 N

d = +0.6

Solved Example (4)

Given:

- UT (GMT) 14h 05m 04s Oct. 11th 1990.
- D.R. Longitude 49° 51`.3 W
- Calculate : L.H.A. & Dec of the *Moon*

GHA

LHA

±Long E/W

129 23.6

49 51.3 79 32.3

Solution

			1990	OCTOBER	10, 1	1, 12	(WED)., тн	IURS.,	FRI.)	
UT	ŞŲ	N		MOON		Lat.	Twili Naut.	ight Civil	Sunrise	10	
0 00 01 01 01 02 04 05 06 06 06 06 0 0 0 0 0 0 0 0 0 0 0 0	G.H.A. o / 183 12.1 198 12.3 213 12.4 228 12.6 228 12.6 228 12.6 228 12.3 303 13.4 318 13.6 333 13.8 346 13.9 346 13.9 348 14.1 18 14.3 48 14.6 63 14.8 76 14.9 93 15.1 108 15.3 15.8 1	Dec. S 6 27.7 2 86 29.	G.H.A. o / 286 41.1 301 04.2 315 27.3 329 50.5 344 13.7 358 37.1 13 00.5 27 24.0 41 47.5 56 11.2 70 34.9 84 58.7 128 10.6 124 24.7 155 59.0 171 22.3 185 47.7 200 12.2 214 36.8 229 01.5 243 26.3	v Dec. , or , 10, 126 07.8 4.2 26 04.5 4.2 26 04.5 4.2 26 04.5 4.2 26 04.0 4.4 25 57.4 4.5 25 45.4 4.7 25 45.4 4.7 25 45.4 4.7 25 36.5 4.8 25 31.9 4.9 25 27.0 4.9 25 27.0 4.9 25 27.0 4.9 25 27.0 5.1 25 11.6 5.3 25 06.1 5.3 25 06.1 5.3 25 06.1 5.4 24 54.6 5.7 24 36.5 5.8 24 42.9 5.9 24 23.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	d H.P. 4. , , , , , , , , , , , , , , , , , , ,	<pre>N 72 N 70 068 666 64 62 60 N 58 564 552 554 552 300 N 10 0 S 100 305 40 S 100 305 40 S 100 305 40 S 100 S 10</pre>	<pre>^ m 04 36 04 42 04 51 04 51 04 57 04 57 04 57 04 57 05 02 05 03 05 04 05 07 05 04 53 04 43 4 04 27 04 19</pre>	b ms 05 55 05 55 05 51 05 50 05 50 05 50 05 50 05 50 05 43 05 37 05 23 05 27 05 23 05 11 05 03 04 52	<pre>^ m m 07 03 06 55 06 42 06 37 06 29 06 22 06 22 06 22 06 22 06 22 06 20 06 17 06 15 06 02 05 59 05 48 05 39 05 23 05 19</pre>	<pre> " " " " 19 01 19 45 20 15 20 37 20 55 21 21 21 59 22 19 22 31 24 23 32 23 51 24 10 24 30 00 00 15 00 33 </pre>	14 21 22 22 22 22 22 22 22 22 22 22 22 22
GHA		12	8 10.	6	Dec			25	11.	6 N	
Incr.			1 12.	5	d. C	Coor	n		0.:	5	
v. Coor	n		0.	5	C.D	ec.		25	11.	1 N	

v 5.1 d - 5.1
Marine Sextant

Introduction

The marine sextant is used by the mariner to observe the altitude of celestial bodies as well as to measure horizontal and vertical angles of terrestrial objects. On the image of a sextant below highlight for the main component features is done.

Optical Principles of a Sextant

The principle of optics involved is stated:

The angle between the first and last directions of a ray of light that has undergone two reflections in the same plane is twice the angle that the two reflecting surfaces make with each other.

Assuming:

 θ : the angle of altitude;

(*The angle between the first and last directions of a ray of light that has undergone two reflections*) φ: the angle moved by Index arm on the graduated arc;

(The angle that the two reflecting surfaces make with each other)

 $\Delta ABC \rightarrow \alpha = \beta + \varphi$ $\Delta ABE \rightarrow 2 \alpha = 2 \beta + \theta$

Thus $\theta = 2 \phi$ for this reason:

The angles on the graduated arc are doubled.

Reading Measured Angles

Measured Angle : 28° 49`.5

Instrument error

A good sextant is accompanied by a calibration certificate which reports the "reading errors "along its full graduated scale; otherwise the factory declares that the instrument is free of errors (certifying that the error is less than +/-9" which is negligible for practical use).

Adjustable errors

The sequence has to be respected in detecting and removing of errors:

- Perpendicularity Error
- Side Error
- Collimation Error
- Index Error

Perpendicularity Error

This error appears when the index mirror (rectangular mirror) is not perpendicular to the frame (and arc). It is easy to detect it.

Put the sextant on a horizontal plane and move the Index Arm to a position 35°-45° degrees. Look at the index mirror in the direction of arc (graduated scale). We see two images of the scale: the reflected image on the left side, the direct image on the right side. We must see a straight line (the arc with the graduated scale) as in this photo;

If we see a broken line we remove the error using the adjusting screw on the index mirror:

Side Error

This error appears when the horizon mirror (rounded mirror) is not perpendicular to the frame.

To check the existence of *Side Error*, we use any of the following objects; faint star, sun, light house (at a distance > one nautical mile) or sea horizon.

In case of using a faint star, set the Index Arm to zero degrees, observe the star with the sextant and move the drum (minute scale/micrometer). The reflected star has to pass alternately below and above the direct star

Here the reflected star does not pass on the direct star in the vertical movement; thus the side error exists.

In case of use the sun or far light house, hold the sextant vertically and look directly to the object. If there a side shift of the object, side error exists.

In the figures below side error exists

In case of use the sea horizon, hold the sextant horizontally and look at the horizon with the telescope: direct horizon and the reflected horizon should be a straight line. In the figure below side error exists

The "side error" must be removed using the adjusting screw on the horizon mirror (screw no. 1):

Collimation Error

"A high quality sextant is not affected by this error "

Index error

The sextant has an index error if the index mirror and horizon mirror are not parallel when the index arm and the drum with minute scale are set exactly at zero. If the error is more than +/-3 \cdot 0 we have to reduce it.

To check the existence of *Index Error*, we use any of the following objects; faint star, sun, light house (at a distance > one nautical mile) or sea horizon.

In case of use the sun, far light house or sea horizon; hold the sextant vertically and look directly to the object. If there a vertical shift of the object, index error exists. In the figures below index error exists.

The "side error" must be removed using the adjusting screw on the horizon mirror (screw no. 1):

screw no. 2

The *Index Error* must be removed using the adjusting screw on the horizon mirror (screw no. 2). Figure ().

To be sure that the two errors were removed incline the sextant to right or left and notices the line of the sea horizon; if there are a shift, side error adjustment must be repeated. See Figure (). *Calculation of Index Error*

Navigator cannot bring the reflected image in coincidence to the direct image completely, this is because the nature of the human eye.

To calculate the residual error (*Index Error*) we can use the sun or sea horizon. In case of use of sea horizon;

• Put the index and micrometer at zero readings.

•

- Look for the sea horizon and notice the following:
 - 1. If the there are no cut in the line of the horizon the Index Error is considered nil. Figure (a)
 - 2. If there is a cut in the line of sea horizon index error is present Figure (b)
- In case of the existence of the error, turn the micrometer slowly until the cut is removed. The reading is the *Index Error* and must be less than ±3`.0.

Figure (a)

Figure (b)

Practically the side error and the index error are adjusted together. This is done by removing screw no.1 then screw no.2 consecutively until the reflected image is completely coincides to the direct image.

In case of use the Sun:

- Put the index and micrometer at zero readings.
- Put the suitable shades.
- Adjust the focus of the telescope.
- Look for the sun and :
 - 1) Turn the micrometer drum until the reflected sun being in touch with the direct sun. Take the reading and note it.
 - 2) Turn the micrometer drum in the opposite direction until the reflected sun being in touch with the direct sun from the other side. Take the reading and note it.

• The noted readings are on arc and off arc. Apply the following formula to obtain the Index Error.

I.E. = [(Reading off arc - Reading on arc) / 2]

• To be satisfied of the above process apply the following rule to obtain the Semi Diameter (SD) of sun which must be equal to that given in the Nautical Almanac Tables in day of the process.

S.D. = [(Reading off arc + Reading on arc) / 4]

SOLVED EXAMPLE (1)

When Calculating the Index correction of the marine sextant using the Sun; on 29th May ; the following observations were obtained :

 1^{st} observation: 32`.0 on the arc.

 2^{nd} observation: 31`.2 off the arc.

Calculate the index correction and state its satisfaction.

Answer :

I.C. =
$$\left[\frac{31.2-32.0}{2}\right] = -0^{\circ}.4$$

S.D. = $\left[\frac{31.2+32.0}{4}\right] = 15^{\circ}.8$; agree with the S.D. given the daily page of 29th May in *Nautical. Almanac*.
SO 1. The readings are satisfied.
2. The Index Correction obtained, is recommended.

SOLVED EXAMPLE (2)

When Calculating the Index correction of the marine sextant using the Sun ; on 5th January ; the following observations were obtained :

1st observation: 33[.]4 on the arc.

 2^{nd} observation: 33`.8 off the arc.

Calculate the index correction and state its satisfaction. Answer :

I.C. =
$$\left[\frac{33.8-33.4}{2}\right]$$
 = +0°.2
S.D. = $\left[\frac{33.8+33.4}{4}\right]$ = 16°.8 whilst the value given in the *Nautical*
Almanac is 16°.3
SO 1. The readings are not satisfied.

- 1. The readings are not satisfied.
 - 2. The process of obtaining the *index correction* must be repeated.

Corrections of Sextant Altitude

The Horizon

The range of vision in sea is limited by the Curvature of the earth .The vision of an observer at O should be limited by the circle VV', this is the *Visible Horizon*.

If we imagine a limitless plane passing through the observer's eye at right angle to the earth's radius, passing through the observer, this plane is the *Sensible Horizon* SOS'.

The plane passing through the earth's center parallel to the sensible horizon is the *Rational Horizon* RCR'. The rational horizon is a great circle on the celestial sphere.

When the observer takes the sextant altitude of a heavenly body he measures the angle of elevation above the visible horizon. This is the sextant altitude and when corrected for sextant error it is known as the observed altitude XOV.

The position of the body with reference to the visible horizon at the instant of observation has now been determined (*observed altitude*) and it becomes necessary to convert this altitude into a *true altitude* which is the angular elevation above the rational horizon XCR.

Corrections of the sextant altitude:

The various corrections to be applied to the sextant altitude in order to obtain the true altitude are:

- 1. <u>Index error</u>: to obtain the observed altitude
- 2. <u>Dip:</u> to correct the angular depression of the visible horizon below the sensible horizon.
- 3. **<u>Refraction</u>**: to allow for the bending of the light rays as they pass through the atmosphere.
- 4. <u>Semi-diameter:</u> to convert the altitude from that of the limb of the body to its center (for the Sun and the Moon).
- 5. **<u>Parallax</u>**: to convert from sensible horizon to rational horizon and is applied because the observer is at the circumference and not the center of the earth (for the Moon, Venus and Mars).

Angle of Dip:

Dip is the angular depression of the visible horizon below the sensible horizon. Dip is always subtracted and must be applied to any altitude unless an artificial horizon or bubble sextant has been used, both of which indicate the sensible horizon.

The value of the dip can be extracted from the table of Dip given in N.A. tables. This table is arranged as a critical table. In this an interval of height of eye corresponds to a single value of the correction; no interpolation is required.

Z: Zenith point O: the observer's eye C: Earth's Center OH: Height of eye OC=OH+HC Or OC=(h + R)

At a critical entry the upper of the two possible values of the correction is to be taken; for example, a correction of (-4.1°) corresponds to all values of the height of eye from 5.3m to 5.5m inclusive

	DIP	
Ht. of Eye Corr ¹¹	Ht. of Eye	Ht. of Eye Corr ⁿ
m	ft.	m,

4.5 - 2.8	14.9	24- 8.6
4.7 _ 3.9	15.7	26- 9.0
5.0-4.0	16.2	28- 9.3
5.2 4.1	17.4	
5.5 4.2	18.3	30- 9.6
2.0-4.3	19.1	32-10.0

Refraction

If a ray of light passes through media of different densities, the ray is bent or refracted. The rule in optics states that if a ray of light passes to a denser medium it is refracted towards the normal.

The atmosphere near the earth's surface is more dense than at great heights because it is compressed by the weight of the upper layers.

Light rays passing downwards through the atmosphere are successively bent towards the normal and therefore reach the observer at a steeper angle.

The effect of these phenomena is twofold:

1) The apparent direction of the heavenly body is higher than the true direction by an amount called the *astronomical refraction*.

2) The direction of the horizon is usually lifted up, this is called *terrestrial refraction*.

Mean Refraction

It is the value of the astronomical refraction with the barometer 1010 mbs and a 10°C temperature. There is also a correction table to correct the *mean refraction* for different pressures and temperatures where a special *accuracy* is required.

For Atmospheric Pressure 1000 mb and Air Temperature 27°C Additional Correction + 0`.3

Abnormal Refraction

The mean value of refraction is calculated for the normal atmosphere conditions where temperature and pressure are considered to fall steadily with increased height.

Actual atmospheric conditions however often differ considerably from this theoretical normal and result in *abnormal* refraction

In fact refraction is the most uncertain factor in the observation and the quantities given in the tables may be in error by as much as 20° or more.

Such abnormal refraction will be liable to occur when the sea is warmer than the air and this frequently happens near land masses, for example in the Red Sea, Arabian (Persian) Gulf, the west Coast of Africa and on the edges of the Gulf stream. The effect of unequal heating give rise to stratification; that is layers of atmosphere of different densities through which the light may suffers abnormal refraction. The optical effects of this are generally termed *mirage*.

The lower portion of the atmosphere is most subject to stratification and this is one reason why observations should generally be taken from the upper bridge.

No general rules for dealing with abnormal refraction are available but whenever it is suspected the results of astronomical observations should be treated *with caution*.

Semi-Diameter

The sun and moon do not appear as points but as bodies with an appreciable diameter.

The altitude of the lower or upper limb (edge) is measured with the sextant and in order to find the altitude of the center, semi-diameter must be

The value of the Sun's semi diameter varies from 15.75' at the beginning of July when the earth is farthest from the sun (aphelion) to 16.3' in January when it is closest (Perihelion).

The value of the moon's semi-diameter varies between 14.5' and 17.0'

If the moon is either crescent or gibbous the observer has no choice as to which limb to take since it is only at full moon that both limbs are visible.

	SL	IN				č	N	00	N		
G.1	H.A.		D	ec.	G.1	H.A.	v	D	ec.	d	H.P.
0	/		0	,	0	1	1	0	/	/	1
176	40.1	S	9	38.3	193	46.2	10.7	S15	32.0	13.4	58.2
191	40.2			37.4	208	15.9	10.7	15	18.6	13.6	58.2
206	40.3			36.4	222	45.6	10.8	15	05.0	13.6	58.2
221	40.4			35 5	237	15.4	10.8	14	51 4	127	50 3
110	40./			22.11	1100	V0.2	11.2	2	U8.U	10./	57./ 1
131	46.8			34.1	114	38.5	11.3	2	24.7	16.6	59.7
146	46.9			33.2	129	08.8	11.3	2	41.3	16.6	59.8
161	47.1		_	32.3	143	39.1	11.2	2	57.9	16.7	59.8
S.D.	16.2		d	0.9	S.D		15.9		16.1		16.2

Parallax

So far we have considered the case of an observer on the surface of the earth, and have corrected the altitude to the level of the sensible horizon. Since we need the true altitude at the center of the earth above the rational horizon, we must allow for the difference which is called the parallax.

The parallax is therefore the angle subtended at the body by the radius of the earth to the observer's position; and it is show in figure by the angle OXC.

Parallax decreases with increasing Altitude

It is seen also that the true altitude RCX is greater than the apparent altitude by an amount equal to the parallax angle OXC, so that the correction for parallax is always additive.

Referring to the above left figure; it is obvious that the parallax gets less as the body rises above the horizon; and it will be zero a body with an altitude of 90 $^{\circ}$.

The maximum value of parallax will therefore be when the body is on the sensible horizon; at M_1 when it is called the horizontal parallax, abbreviated to (H.P.).

Relation between Parallax & Horizontal Parallax:

Parallax in alt. = horizontal parallax. Cos (app. Alt.)

The limiting value of horizontal parallax depends on the astronomical distance of the body from the earth and is appreciable only in the case of those navigational bodies within the solar system, the moon, sun and planets, being greatest in the case of the moon with an average value of about 60' given every hour in the Nautical Almanac.

STARS AND PLANETS			
App. Alt. Corr ⁿ	App. Additional Alt. Corr ⁿ		
9 56 -5·3 10 08 - 5·3	1990 VENUS		
$\begin{array}{c} 10 & 20 \\ 10 & 33 \\ 10 & 46 \end{array}$	Jan. 1-Feb. 8 $0^{\circ} + 0^{\circ}s$		
11 00 - 4.9 11 14 - 4.8 11 14 - 4.7	26 + 0.4 46 + 0.3 60 + 0.3 72 + 0.2		
$\begin{array}{c} 11 & 29 \\ 11 & 45 \\ 12 & 01 \end{array}$	84 + 0·1 84 Feb. 9–Feb. 23		
$\begin{array}{r} 12 & 18 \\ 12 & 35 \\ 12 & 35 \\ 12 & 54 \end{array}$	29 + 0.4 29 + 0.3 51 + 0.3		
13 13 - 4.0 13 33 - 3.0	68 + 0.2 83 + 0.1 Feb. 24-Mar. 18		
13 54			

	MOON							Lat.
	G.I	H.A.	v	D	ec.	d	H.P.	N 72
	0	,	,	0		1		N 12
8	213	42.0	5.5	N25	36.3	2.6	58.2	N 70
3	228	06.5	5.4	25	38.9	2.5	58.3	68
7	242	30.9	5.3	25	41.4	2.3	58.3	66
2	256	55.2	5.3	25	43.7	2.2	58.3	64
6	271	19.5	5.2	25	45.9	2.0	58.4	62
.1	285	43.7	5.1	25	47.9	1.8	58.4	60
5	300	07.8	5.1	N25	49.7	1.6	58.4	N 58
.0	314	31.9	5.0	25	51.3	1.5	58.5	56
4	328	55.9	4.9	25	52.8	1.3	58.5	54
8	343	19.8	4.9	25	54.1	1.2	58.6	52
3	357	43.7	4.8	25	55.3	1.0	58.6	50
.7	12	07.5	4.8	25	56.3	0.8	58.6	45
2	26	31.3	4.7	N25	57.1	0.6	58.7	N 40

Solved Example (1)

When solving an astronomical sight of the star Vega; the following data were recorded:

- Sext. alt. 42° 12`.8
- I.E. 2`.2 off the arc

• Ht. of eye 13.4 m

Calculate True Altitude.

Answer :

Sext. alt.	42° 12`.8
I.E.	2`.2 (+)
Obs. alt.	42° 15`.0
Dip	6`.4 (-)
App. alt.	42° 08`.6
Corr.	1`.1 (-)
True alt.	42° 07`.5

Solved Example (2)

When solving an astronomical sight of the Sun's Lower Limb, the following data were recorded:

- Sext. alt. 44° 22`.3
- I.E. 1`.7 on the arc
- Ht. of eye 11`.2 m
- G.M.T. 19h 15m 33s Jun. 15th; 1984

Calculate True Altitude .

Answer :

Sext. alt.	44° 22`.3
I.E.	1`.7 (-)
Obs. alt.	44° 20`.6
Dip	5`.9 (-)
App. alt.	44° 14`.7
Corr.	15`.0 (+)
True alt.	44° 29`.7

Solved Example (3)

When solving an astronomical sight of the planet Venus, the following data were recorded:

- Sext. alt. 24° 22`.3
- I.E. 1`.7 off the arc
- Ht. of eye 15`.2 m
- G.M.T. 10h 10m 03s Feb. 20th; 1990

Calculate True Altitude .

Answer :

Sext. alt.	24° 22`.3
I.E.	1`.7 (+)
Obs. alt.	24° 24`.0
Dip	6`.9 (-)
App. alt.	24° 17`.1
Corr.	02`.1 (-)
Add. Corr.	00`.4 (+)
True alt.	24° 15`.4

STARS A	ND PLANETS
App. Alt. Corr ⁿ	App. Additional Alt. Corr ⁿ
$\begin{array}{c} 9 56 - 5^{\circ} 3 \\ 10 08 - 5^{\circ} 2 \\ 10 20 - 5^{\circ} 1 \\ 10 33 - 5^{\circ} 0 \\ 11 00 - 4^{\circ} 9 \\ 11 1 44 - 4^{\circ} 7 \\ 11 49 - 4^{\circ} 7 \\ 11 45 - 4^{\circ} 7 \\ 12 01 - 4^{\circ} 7 \\ 12 18 - 4^{\circ} 1 \\ 12 35 - 4^{\circ} 2 \\ 12 54 - 4^{\circ} 1 \\ 13 13 - 4^{\circ} 0 \end{array}$	$\begin{array}{c} 1990 \\ \hline VENUS \\ Jan. 1-Feb. 8 \\ 0 \\ 26 \\ + 0^{2} \\ 46 \\ + 0^{3} \\ 60 \\ + 0^{2} \\ 8^{3} \\ + 0^{1} \\ Feb. 9-Feb. 23 \\ 0 \\ 8^{3} \\ + 0^{2} \\ 10^{2} \\ + 0^{2} \\ 68 \\ 8^{3} \\ + 0^{1} \\ \end{array}$

Solved Example (4)

When solving an astronomical sight of the *Moon's upper Limb*, the following data were recorded:

- Sext. alt. 32° 35`.7
- I.E. 1`.5 off the arc
- Ht. of eye 15`.1 m
- G.M.T. 21h 10m 44s Dec. 20th; 1984

Calculate True Altitude .

Answer :

Extracted HP from daily page (59`.1)

Sext. alt.	32° 35`.7
I.E.	1`.5 (+)
Obs. alt.	32° 37`.2
Dip	6`.8 (-)
App. alt.	32° 30`.4
Corr.	57`.8 (+)
Add. Corr.	4`.4 (+)
о -30`	30`.0 (-)
True alt.	33° 02`.6

Solving the Spherical Triangle PZX

Introduction:

The spherical triangle PZX composed of three vertices :

- P (the elevated pole)
- Z (the zenith point)
- X (the celestial body concerned)

Where its angles are :

- Angle at the pole P is the Local hour angle (less than 180°).
- Angle at the zenith Z is the Azimuth (in semi-circular reckoning).

• Angle at the celestial body X is called the parallactic angle .(hardly used in navigation) And its three sides are :

- PZ (co-latitude)
- PX (co-declination or polar distance)
- ZX (co-altitude or zenith distance)

Its importance arrives from the fact that ; it relates the horizon coordinates of the body to its equatorial coordinates and , what is particularly important , to the geographic coordinates of the observer (the longitude of the observer is contained through the local hour angle LHA).

The Spherical Triangle PZX and its solution:

A. Obtaining (Calculated Zenith Distance) side ZX

When solving the astronomical sights by Intercept method (Marcq St. Hilair method); we need to solve the problem of "given two sides and the included angle to obtain the third side "; where in our case three variables are known in the spherical triangle PZX;

1) Side PZ = 90° - D.R. Lat. 2) Side PX = $90^{\circ} \pm \text{Dec.}$ 3) Angle P = L.H.A.

It is required to obtain the 3rd side ZX which represents the Calculated Zenith Distance C.Z.D.

There are many ways to solve this problem; by applying the rules of the spherical trigonometry or by using Nautical Mathematical Tables .In this text we shall explain two methods to solve the problem by spherical trigonometry.

- Method (1): Using Haversine function.
- Method (2): Using Cosine formula.

Method (1) Haversine Function

The Haversine function has the advantage of being positive in all quadrants; and given by any of the following definitions :

hav $\theta = 0.5 (1 - \cos \theta)$ OR

hav $\theta = \sin^2(\theta/2)$

To solve the problem "Given two sides and the included angle, to find the third side ", in the spherical triangle ABC; Given A, AB and AC, find BC the formula will be stated as follows:

hav [BC] = hav (A) sins (AB) sin (AC) + hav (AB ~ AC)

Applying the above formula to the spherical triangle PZX, where the following three variables are known :

- Side $PZ = 90^{\circ} D.R.$ Lat.
- Side $PX = 90^\circ \pm Dec.$
- Angle P = L.H.A.

And it is required to obtain the 3^{rd} side ZX which represents the Calculated Zenith Distance C.Z.D., the following relation is obtained :

hav $ZX = hav P \sin PZ \sin PX + hav (PZ ~ PX)$.

By substitution; the final formula to be applied is stated as:

hav CZD = hav LHA. cos Lat. cos Dec. + hav (Lat. ~ Dec.) Which can be solved in the suggested pattern:

LHA		hav.	
Lat.	х	Cos	
Dec.	х	Cos	
		hav.	
Lat. ~ Dec.	+	hav.	
CZD		hav.	

Solved Example (1):

When solving an astronomical sight using Intercept method ; the following results were obtained :

LHA	319°	40.2`
DR Lat	31°	15.2` N
Dec.	38°	45.6` N

Using personal calculator ; calculate CZD, applying Haversine function. Solution:

LHA	319° 53`.8	hav.	0.11756
Lat.	33° 55`.0 S x	Cos	0.82985
Dec.	13° 15`.8 N x	Cos	0.97333
		hav.	0.09496
Lat.~ Dec.	47° 10`.8+	hav.	0.16015
CZD	60° 40`.4	hav.	0.25511

Solved Example (2):

When solving an astronomical sight using Intercept method ; the following results were obtained :

LHA	319°	53`.8
DR Lat	33°	55`.0 S
Dec.	13°	15`.8 N

Using personal calculator ; calculate CZD , applying Haversine function. Solution:

LHA	319°	40.2`	hav.	0.11884
Lat.	31°	15.2` Nx	Cos	0.85488
Dec.	38°	45.6` Nx	Cos	0.77978
			hav.	0.07922
Lat.~ Dec.	7°	30`.4+	hav.	0.00429
CZD	33°	35`.6	hav.	0.08351

Method (2) Cosine Formula

The law of cosines for sides is a fundamental formula for solving a spherical triangle. As applied to spherical triangle ABC; the law is stated as:

- $\cos a = \sin b \cdot \sin c \cdot \cos A + \cos b \cdot \cos c$
- $\cos b = \sin a \cdot \sin c \cdot \cos B + \cos a \cdot \cos c$
- $\cos c = \sin a \cdot \sin b \cdot \cos C + \cos a \cdot \cos b$

Applying the above formula to the spherical triangle PZX, where the following three variables are known :

- Side $PZ = 90^{\circ} D.R.$ Lat.
- Side $PX = 90^{\circ} \pm Dec$.
- Angle P = L.H.A.

And it is required to obtain the 3rd side ZX which represents the Calculated Zenith Distance C.Z.D. the following relation is obtained

cos ZX = sin PZ sin PX cos P + cos PZ cos PX By substitution ; the final formula to be applied is stated as: cos CZD = cos Lat. cos Dec cos LHA + sin Lat. sin Dec

When investigating the signs, bear in mind the following :

<u>The latitude</u> is always considered positive. The latitude is always numerically less than 90°; for this reason, all its trigonometric functions have the plus sign.

<u>The declination</u> may be of the same name as the latitude; then it should be considered positive; or it has a contrary name to the latitude; then it is negative; the declination is always less than 90°.

Regarding the previous investigations of signs; the final applicable formula will be in the following form :

 $\cos [CZD] = \cos (Lat.) \cos (Dec) \cos (LHA) \pm \sin (Lat.) \sin (Dec)$

Positive sign is used in case of the latitude and declination are of same name. Negative sign is used in case of the latitude and declination are of contrary name.

The formula can be solved using the following suggested pattern :

LHA	Cos		
Lat.	Cos	Sin.	
Dec.	Cos	Sin	
		±	
CZD	\leftarrow		

Solved Example 1:

When solving an astronomical sight using Intercept method ; the following results were obtained :

0			
LHA	319°	40.2`	
DR Lat	31°	15.2`	Ν
Dec.	38°	45.6`	Ν

Using personal calculator ; calculate CZD; applying Cosine Formula.

Solution:

LHA	319° 40.2`	Cos	0.76233		
Lat.	31° 15.2` N x	Cos	0.85488	Sin.	0.51882
Dec.	38° 45.6` N x	Cos	0.77978	Sin	0.62606
		+	0.50818	+	0.32481
CZD	33° 35`.6	\leftarrow		0.8329	19

Solved Example 2:

When solving an astronomical sight using Intercept method ; the following results were obtained :

LHA	159°	40.0
DR Lat	61°	15.0` N
Dec.	48°	55.0` N

Using personal calculator ; calculate CZD , applying Cosine Formula. Solution:

LHA	159° 40.0`	Cos	0.93769		
Lat.	61° 15.0` Nx	Cos	0.48099	Sin.	0.87673
Dec.	48° 55.0` Nx	Cos	0.65716	Sin	0.75375
		-	0.29639	+	0.66084
CZD	68° 37`.6	\leftarrow		0.3644	5

B. Obtaining Azimuth Angle Z.

Applying the well-known formula which connects four adjacent parts of a spherical triangle; which states :

Cos (Inner side) * Cos (Inner angle) = Sin (Inner side) * Cot (Other side) - Sin (Inner angle) * Cot (Other angle)

It can be shown, for instance, that in the spherical triangle ABC:

 $\cos PZ * \cos P = \sin PZ * \cot PX - \sin P * \cot .Z$ Dividing by (sin P * sin PZ) $\frac{\cos PZ * \cos P}{\sin P * \sin PZ} = \frac{\sin PZ * \cot PX}{\sin P * \sin PZ} - \frac{\sin P * \cot .Z}{\sin P * \sin PZ}$ $\cot PZ * \cot P = \cot PX * \csc P - \csc PZ * \cot Z$ $\tan Lat. * \cot LHA = \tan Dec * \csc LHA - \sec Lat. * \cot Z$ i.e. $\sec. Lat. * \cot Z = \tan Lat. * \cot LHA - \tan Dec * \csc LHA$ Naming $\tan Lat. * \cot LHA$ as A

and tan Dec * cosec LHA as B Hence cot. $Z = (A + or ~ B) * _{cos}$. Lat. (A + or ~ B), referred to for convenience as C Thus we have: cot. Z = C*cos. Lat.

Neglecting the sins of the parameters; A, B and C we name them as follows:

A: named opposite to Latitude except when L.H.A. is contained between 90° & 270°.

B: named always as Declination.

C: takes the name of the resultant of A & B.

The Azimuth Z is denoted N or S as C and E or W according to the value of the L.H.A. Note:

(W) if L.H.A. $< 180^{\circ}$ and (E) if L.H.A. $> 180^{\circ}$.

Solved Example (1) Given the following parameters for a certain heavenly body and a certain observer;

L.H.A. 297° 08.8				
Latitude 40° 12` 0 N	L.H.A.	297 08.8	А	0.433 S
Declination 12° 00`.8 N	Lat.	40 12.0 N	В	0.239 N
Calculate the True Bearing of that body.	Dec.	12 00.8 N	С	0.194 S
Solution:			Az.	S 81.6 E
			T. Bg.	098.4

A: is named opposite to lat.

B: has the same name as Dec.

C: has the name of A which is numerically greater than B.

The Azimuth is named S because C is S; and E because LHA $> 180^{\circ}$.

Solved Example (2)

Given the following parameters for a certain heavenly body and a certain observer ;

L.H.A. 244° 48`.1 Latitude 41° 19`.3 S Declination 5° 10`.7 S

Calculate the True Bearing of that body.

Solution:

L.H.A.	244 48.1	А	0.414 S
Lat.	41 19.3 S	В	0.100 S
Dec.	5 10.7 S	С	0.514 S
		Az.	S 68.9 E
		T. Bg.	111.1

A: is named same name as lat. because L.H.A. is between 90° and 270°.

B: has the same name as Dec.

C = A + B has the name as A & B

The Azimuth is named S because C is S; and E because LHA > 180°.

Twilight Phenomena

Introduction:

There are several phenomena associated with the rising and setting of the sun and other celestial bodies of significance and consequent interest to the navigator. The most important of these are twilight, sunrise, sunset, moonrise and moonset.

Twilight is the period before sunrise when darkness is giving way to daylight, and after sunset, when the opposite progression takes place.

Morning twilight ends at sunrise, defined as the first appearance of the sun's upper limb above the visible horizon, and evening twilight begins at sunset, or the disappearance of the sun's upper limb below the horizon. Moonrise and moonset are defined similarly to sunrise and sunset, by the contact of the upper limb of the moon with the visible horizon.

Twilight is of special interest to the navigator, as this is the only time when the visible horizon is still light enough to be clearly defined, while the navigational stars and planets are bright enough to be observed with a marine sextant. Sunrise and sunset are only slightly less important, it the time at which the navigator calculate the <u>Amplitude</u> to obtain compass error.

Definitions

Twilight is defined according to the solar elevation angle; which is the position of the geometric center of the sun relative to the horizon. There are three established and widely accepted *subcategories* of twilight: civil twilight (brightest), nautical twilight, and astronomical twilight (darkest).

A. CIVIL TWILIGHT

Morning civil twilight begins when the geometric center of the sun is 6° below the visible horizon (civil dawn) and ends at visible sunrise. Evening civil twilight begins at visible sunset and ends when the geometric center of the sun reaches 6° below the visible horizon (civil dusk). The brightest planets can appear during this time. Venus, the brightest planet as observed from the Earth is known as the "morning star" before sunrise or "evening star" after sunset.

At the beginning of morning civil twilight, or end of evening civil twilight, the visible horizon is clearly defined and the brightest stars are visible under clear atmospheric conditions.

B. NAUTICAL TWILIGHT

Nautical twilight is the time when the center of the sun is between 6° and 12° below the horizon. In general, nautical twilight ends when navigation via the horizon at sea is no longer possible. During nautical twilight, sailors can take reliable star sightings of well-known stars, using a visible horizon for reference.

C. ASTRONOMICAL TWILIGHT

Astronomical twilight is the time when the center of the sun is between 12° and 18° below the visible horizon.

Theoretically, the dimmest stars ever visible to the naked eye (those of the sixth magnitude), will become visible in the evening once the sun falls more than 18° below the visible horizon (*i.e.*, at <u>astronomical dusk</u>), and become invisible when the sun moves to within 18° of the visible horizon in the morning (at <u>astronomical dawn</u>).

Twilight between day and night

The most familiar occurrences of twilight are between <u>dawn</u> and <u>sunrise</u> and between <u>sunset</u> and <u>dusk</u> each day. These occur for observers at latitudes within 48°.5 of the Equator on all dates of the year, and also for most observers at higher latitudes on many dates.

Twilight lasting from one day to the next

At latitudes greater than about 48.5 degrees North or South, on dates near the summer solstice, twilight can last from sunset to sunrise, since the Sun does not go more than 18 degrees below the visible horizon, so complete darkness does not occur even at midnight.

Twilight between one night and the next, or for 24 hours:

In <u>Arctic</u> and <u>Antarctic</u> latitudes in wintertime, the <u>polar night</u> only rarely produces complete darkness for 24 hours each day. This can occur only at locations within 5.5 degrees of latitude of the Pole, and there only on dates very close to the <u>winter solstice</u>. At all other latitudes and dates, the polar night includes a daily period of twilight, when the Sun is not far below the visible horizon.

Length

The number of daylight hours depends on the latitude and time of year. Each pole has continuous daylight near its <u>summer solstice</u>.

The length of twilight after sunset and before sunrise is heavily influenced by the <u>latitude</u> of the observer. In the <u>Arctic</u> and <u>Antarctic</u> regions, twilight (if there is any) can last for several hours. There is no astronomical twilight at the poles near the <u>winter solstice</u> (for about 74 days at the North Pole and about 80 days at the South Pole). At the poles, civil twilight can be as long as 2–3 weeks, while at the <u>equator</u>, conditions can go from day to night in as little as 20–25 minutes. This is true because at <u>low latitudes</u> the sun's apparent movement is <u>perpendicular</u> to the observer's horizon. As one gets closer to the Arctic and Antarctic circles, the sun's disk moves toward the observer's horizon at a lower angle.

Solved Example (1)

Calculate Z.T. of each of sunrise and sunset phenomena hence the interval of **direct Day Light** at **Shortest Day** for an observer in DR position (62° 00`.0 N; 159° 15`.0 W)? Answer:

- Shortest Day for north latitude observer occurs at 22nd December..
- Calculations:

	Sun Rise	Sun Set
L.M.T.	9 24 + 28	14 33 -29
Lat. Corr ⁿ .	00	00
L.M.T.	9 24	14 33
\pm Long. (+)	10 37	10 37
G.M.T.	20 01	25 10
Z.N. (-)	11	11
Z.T.	09 01	14 10

- Z.T. of sunrise 09h 01m
- Z.T. of sunset 14h 10m
- Interval of Day Light = [14h 10m 9h 01m] = 5h 09m

Solved Example (2)

Calculate Z.T. of each of sunrise and sunset phenomena hence the interval of **direct Day Light** at **Longest Day** for an observer in DR position (60° 00`.0 S; 159° 15`.0 W)?

Answer:

- Longest Day for south latitude observer occurs at 22nd December
- Calculations:

	Sun Rise	Sun Set
L.M.T.	2 32 ??	21 25 ??
Lat. Corr ⁿ .	00	00
L.M.T.	2 32	21 25
\pm Long. (+)	10 37	10 37
G.M.T.	13 09	32 02
Z.N. (-)	11	11
Z.T.	02 09	21 02

- Z.T. of sunrise 02h 09m
- Z.T. of sunset 21h 02m
- Interval of Day Light = [21h 02m 2h 09m] = 18h 53m

Solved Example (3)

On January 8^{th} , 1990; for an observer in DR position (33° 30'.0 N; 19° 45.0 W); Calculate:

- 1. Z.T. of the beginning of morning star sight.
- 2. Z.T. of the end of morning star sight.
- 3. Interval of morning star sight.

Answer:

	Naut. Tw.	Civil Tw.	Sun Rise
L.M.T.	06 01 (+8)	06 31 (+10)	06 57 (+12)
Lat. Corr ⁿ .	06	07	08
L.M.T.	06 07 Jan 8 th	06 38 Jan 8 th	07 05 Jan 8 th
\pm Long. (+)	01 19	01 19	01 19
G.M.T.	07 26 Jan 8 th	07 57 Jan 8 th	08 24 Jan 8 th
Z.N. R (-)	1	1	1
Z.T.	06 26 Jan 8 th	06 57 Jan 8 th	07 24 Jan 8 th

142

Morning star sights begins at ZT Morning star sights end at ZT Interval of morning star sights 06h 41m 30s 07h 10m 30s 29 m

Solved Example (4)

On March 15th, 1990; for an observer in DR position (43° 30`.0 S; 149° 45.0 E); Calculate:

- 1. Z.T. of the beginning of evening star sight.
- 2. Z.T. of the end of evening star sight.
- 3. Interval of evening star sight.

Answer:

	Sunset	Civil Tw.	Naut. Tw.
L.M.T.	18 20 (+2)	18 47 (+4)	19 19 (+7)
Lat. Corr ⁿ .	01	03	05
L.M.T.	18 21 Mar 15 th	18 50 Mar 15 th	19 24 Mar 15 th
± Long. (-)	09 59	09 59	09 59
G.M.T.	08 22 Mar 15 th	08 51 Mar 15 th	09 25 Mar 15 th
Z.N. (+)	10	10	10
Z.T.	18 22 Mar 15 th	18 51 Mar 15 th	19 25 Mar 15 th

143

Evening star sights begins at ZT Evening star sights ends at ZT Interval of Evening star sights 18h 36m 30s 19h 08m 00s 31m 30s

Solved Example (5)

Calculate Z.T. of Sun Rise given the following information:

- Z.T. 2300 May 10th 1990
- D.R. Position 40° 05`.0N;115° 50`.0 E
- True Course to steer 200°.0
- Speed 18.5 knots

Answer:

1st Approximation

Sun Rise		
L.M.T.	04 49 (-13)	
Lat. Corr ⁿ .	00	
L.M.T.	04 49 May 11 th	
\pm Long.1 (-)	7 43	
G.M.T.1	21 06 May 10 th	
Z.N1 (+)	8	
Z.T.2	05 06 May 11 th	
Z.T. ₁ (-)	2300 May 10 th	
Interval	6h 06m	
Dist. Run	112.9 M	
T. Course	200°.0	

Calculation of Run

<u>d. Lat.</u>	Dep.	m. Lat.	<u>d. L</u>	ong.
106.1S	38.6W	39°.2	47`.3	8W
Lat.1	40° 05`.0N	Long	•1	115° 50`.0 E
d. Lat.	01° 46`.1S	d. Lo	ng.	0° 47`.8W
Lat.2	38° 18`.9N	Long	•2	115° 02`.2E

2nd Approximation

Sun Rise		
L.M.T.	05 00 (-11)	
Lat. Corr ⁿ .	07	
L.M.T.	04 53 May 11 th	
\pm Long. ₂ (-)	7 40	
G.M.T.2	21 13 May 10 th	
$Z.N{2}$ (+)	8	
Z.T.3	05 13 May 11 th	

Solved Example (6)

Calculate Z.T. of Sun Set given the following information:

- Z.T. 1300 May 10th 1990
- D.R. Position 41° 35`.0N;125° 40`.0 E
- True Course to 190°.0 steer
- Speed 18.5 knots

Answer:

1st Approximation

Sun Set		
L.M.T.	19 04 (+13)	
Lat. Corr ⁿ .	04	
L.M.T.	19 08 May 10 th	
\pm Long.1 (-)	8 23	
G.M.T.1	10 45 May 10 th	
Z.N1 (+)	8	
Z.T.2	18 45 May 10 th	
Z.T.1 (-)	13 00 May 10 th	
Interval	5h 45m	
Dist. Run	106.4 M	
T. Course	190°.0	

Calculation of Run

<u>d. Lat.</u>	Dep.	m. Lat.	<u>d. Long.</u>
104`.8 S	18`.5W	40°.7	24`.4W
Lat.1	41° 35`.0N	Long.1	125° 40`.0 E
d. Lat.	01° 44`.8S	d. Long.	0° 24`.4W
Lat.2	39° 50`.2N	Long.2	125° 15`.6E
			•

2nd Approximation

Sun Se	et
L.M.T.	18 53 (+11)
Lat. Corr ⁿ .	11
L.M.T.	19 04 May 10 th
\pm Long. ₂ (-)	8 21
G.M.T.2	10 43 May 10 th
$Z.N{2}$ (+)	8
Z.T.3	18 43 May 10 th

Theory of the Astronomical Position Line

Geographical Position

Definition:

Geographical Position of a Celestial Body is the point of intersection of the line joining the centers of the celestial body and Earth; with Earth's surface.

The figure represents; the Earth centered with the celestial sphere; where:

- **X** the celestial body & PXX" is the meridian of the body.
- Y the geographical position & pYY" is the meridian of the GP
- G Position of Greenwich
- \mathbf{Z}_{G} Zenith of Greenwich & $\mathbf{PZ}_{G}\mathbf{Q}_{G}$ is the upper meridian of Greenwich.

The arc X"X on the celestial sphere is the declination of the body (Dec*)

The arc Y"Y on the Earth is the Latitude of the GP. (Lat. GP)

Since X"X & Y"Y subtends the same angle;

We get:Lat. $_{GP}$ Dec*The arc Q_GX " on the celestial sphere is the GHA of the body (GHA*)The arc q Y" on the Earth is the Longitude of the GP. (Long. $_{GP}$)Since Q_GX "& q Y" subtends the same angle;We get:Long. $_{GP}$ GHA*

Note:

Long. GP is denoted West if $< 180^{\circ}$; and if it was $> 180^{\circ}$ subtract from 360° then denote it East.

SOLVED EXAMPLE (1)

At the morning civil twilight on October 12th; 1990. Ship was in D.R. position (36° 16`.0 S; 175° 18`.0 E).

- Ch.Time 05h 08m 03s
- Ch. Error 4m 44s slow

Calculate the Geographical Position of the star Achernar.

Answer:

\approx L.M.T.	0458 Oct 12 th
\pm Long. w/ E	1141 (-)
G.D.	1717 Oct 11 th
Ch. Time	5h 08m 03s
Ch. Error	04m 44s (+)
G.M.T.	17h 12m 47s
GΗΔΥ	275 01 4
Incr Y	3 12 3
SHA	335 38 5 Dec * 57 16 8 S According to definition
G.H.A.	253 52.2 W ← H.A. is denoted west
Applying: Lat.GP	= Dec*
Long.	$_{\rm SP} = {\rm GHA}_*$ When Long. > 180°; subtract from 260° and reverse notation
The G.P. Is (57°	16`.8 S; 106° 07`.8 E)

SOLVED EXAMPLE (2)

At Z.T. 1455 on April 18th; 1990. Ship was in D.R. position (51° 07'.0 N; 174° 50'.0 W).

- Ch.Time 3h 02m 58s
- Ch. Error 5m 18s fast

Calculate the Geographical Position of the Sun .:

Answer:

Z.T.	1455 Apr 18 th
Z.N.	12 (+)
G.D.	0255 Apr 19 th
Ch. Time	03h 02m 58s
Ch. Error (-)	05m 18s
G.M.T.	02h 57m 40s Apr
	19 th
	<u>I</u>
G.H.A. 210 11	.5 Dec.* 11 02.1 N

G.H.A.	210 11.5	Dec.*	11 UZ.I IN
Incr.	14 25.0	dc	0.9 (+)
G.H.A.	224 36.5 W	C.Dec.*	11 03.0 N

The G.P. is (11° 03^{\cdot}.0 N ; 135° 23^{\cdot}.5 E)

SOLVED EXAMPLE (3)

Z.T. 1750 of January 7th; 1990.
Ship was in D.R. position (29° 10`.2 N; 136° 20`.4 W)
Ch. Time 02h 40m 00s
Ch. Error 5m 22s slow

Calculate the Geographical Position of the star Polaris.

Answer:

Z.T. Z.N. (+) G.D.	1750 Jan. 7 th 9 0250 Jan. 8 th	The star Polaris (α Ursæ Minoris) is not tabulated in daily pages of the <i>Nautical Almanac</i> Tables. Its SHA & Dec. are obtained from pages of
Ch. Time Ch. Error (+) G.M.T.	02h 40m 00s 05m 22s 02h 45m 22s Jan. 8 th	Constellations of stars.
G.H.A. γ Incr. G.H.A. γ S.H.A. * G.H.A.*	137 22.1 11 22.4 148 44.5 324 38.9 113 23.4	→ 89 13.6 N

Applying: $Lat_{GP} = Dec_*$ Long_GP = GHA*

The G.P. Is (89° 13`.6 N; 113° 23`.4 W)

272	_			5	STAI	RS,	1990	JA	NUA	RY-	—J	UN	ΙE					
Maa		Name and Number		S.H.A.				Declination										
wing.	L	Name and Num	ber		JAN.	FEB.	MAR.	APR.	MAY	JUNE			JAN.	FEB.	MAR.	APR.	MAY	JUN
1.6		Geminorum		746	,	20.8	,	201	20:2	2012	N	•••	4.7	4.7	4.7		in'r	
3.3		Puppis		247	45.7	45.8	45.0	46-1	46.3	46-4	S.	41	16.8	17.0	17.1	17.1	17.1	17
1.1	ě	Canis Minoris		248	20.3	20.3	20.4	20.5	20.6	20.6	N.	- 8	18.6	18.6	18.6	18-6	18-6	18
2.4	5	Canis Majoris		249	04.0	04-0	04.1	04.3	04.4	04.5	S.	29	17.0	17.1	17-2	17-2	17-2	17
2.7	÷	Puppis		250	47.6	47-6	47.8	48.0	48-1	48.2	S.	37	04.7	04.9	05-0	05-0	04-9	04
z·o	δ	Canis Majoris		252	59.7	59.7	59.8	60.0	60-1	60-2	S.	26	22-6	22-7	22-8	22.8	22.8	22
3.1	۰	Canis Majoris		254	20.4	20.4	20.5	20.7	20.8	20.8	S.	23	49·I	49.2	49.3	49.3	49.2	49
1.6	۲	Canis Majoris	19	255	26.0	26-0	26.1	26.3	26.4	26.5	S.	28	57.5	57-6	57-7	57-7	57-6	57
2.8	7	Puppis		257	34 1	34.5	34.4	34.0	34.8	34.9	S.	50	30-2	30-3	30.4	30.4	30.3	36
1.8 1.7 0.3 2.9 1.1 3.2 9 1.1 3.2 9 3.0 2.9 1.9 3.0 9 3.0 9	BYBBB LAYES PRO	Tauri Orionis Aurigæ Orionis Eridani Aurigæ Tauri Eridani Persei Persei Tauri Persei	14 13 12 11 10	278 278 281 281 283 285 291 300 300 301 303 303	34.5 50.6 00.1 28.7 09.1 54.3 09.3 36.1 41.8 37.0 16.2 05.4	34-6 50-6 00-2 28-7 09-2 54-4 99-4 36-2 41-9 37-1 16-3 05-6	34.7 50.7 00.3 28.8 09.3 54.5 09.5 36.4 42.1 37.2 16.5 05.8	34.8 50.9 00.5 29.0 09.5 54.7 09.6 36.5 42.2 37.3 16.5 05.9	34'9 50'9 00'5 29'0 09'5 54'7 09'6 36'5 42'2 37'3 16'5 05'9	34-8 50-9 00-5 29-0 09-5 36-4 42-0 37-2 16-4 05-7	NNNSS NNSNN NN	28 6 45 5 33 16 39 31 24 99	36-1 20-6 59-5 12-7 05-9 09-3 29-5 32-2 59-2 51-5 04-7 49-9	36-2 20-5 59-6 12-8 05-9 09-3 29-5 32-2 59-2 51-5 04-7 49-9	36-1 20-5 59-6 12-8 05-9 09-3 29-5 32-2 59-2 51-5 04-7 49-9	36-1 20-5 59-6 12-8 05-9 09-2 29-5 32-2 59-1 51-4 04-6 49-8	36-1 20-5 59-5 12-7 05-9 09-2 29-5 32-1 59-1 51-4 04-6 49-7	36 200 599 12 05 099 32 599 51 04 49
2.8	Ľ	Ceti	8	3.3	33.3	33.4	22.4	32.6	33.5	132.4	l.		03.2	03.1	03-1	03.1	03-2	122
3.1	Ī	Eridani	7	315	31.4	31.5	31.7	31.8	31.8	31.7	S.	40	20-8	20-8	20.7	20.6	20.5	20
	L	Une Minoria			38.0	40.8	10.0	62:0	60.0		l _N	80	1.1.6	12.6	13.6		12.2	۱.,
2.1		(rule guli		344	1302	49.0	1000	45.8	1 45.7	100	lin/	12	100	\$6.7	\$6.6	1 56 6	15 5	1.6
2.2	ľ.	Arichis	6	378	20.6	100	20.8	20.8	20.7	20.5	N.	5	25-1	No	25-1	25.0	25.0	25
					\					I	Deg	Tee	of I	Dec.		Minu	tes of	D
		The star Pola	uris		1													
				Der	N TOOL C	of ST	T A	Mo-	1	ofS	ΗΛ							

152

Position Circle

It is known that the Geographical Position (G.P.) of any celestial body can be obtained at any instant of universal time (G.M.T.) from the equations:

Lat. $_{GP}$ = Dec* Long. $_{GP}$ = GHA*

At the same time; the sextant altitude can be obtained hence the True Zenith Distance (T.Z.D.). Thus, at the moment of recording the sight (G.M.T.) we should have the following data on Earth's surface:

- Coordinates of the point Y representing the G.P. of the body concerned.
- The arc OY which equals the True Zenith Distance T.Z.D. (i.e. the distance of true position of the observer O from the G.P.).

The Locus of the true position of the observer will be a circle centered at Y and of radius T.Z.D. This circle is known as the *position circle*

Position Line

Practically, the radius of the position circle is thousands of Nautical Miles. This means that it is impossible to construct the circle & its center on the navigational chart.

The problem is summarized as follows:

How to construct the portion of the position circle on the navigational chart; while its center is very far from the area of this chart?

In 1878, *Marcq St. Hilair*, a French naval officer, solved this problem in a creative way which is can be summed up as follows :

He assumed that, the ship is situated in the D.R. position O_1 at the moment of the observation; so its zenith point will be at Z_1 . The spherical triangle PZ1X is formed. The known parts of this triangle are:

- a) Side PZ1 = 90° D.R. Lat.
- b) Side PX = 90° Dec.
- c) Angle $P = L.H.A. = G.H.A. \pm D.R.$ Long

By solving this triangle, we obtain the side Z_1X which represents the distance of the body from the D.R. position O_1 on Earth. This side is named Calculated Zenith Distance (C.Z.D.).

Now, on the navigational chart we have:

1) The D.R. position.

2) The distance between the D.R. position and the G.P; known as (C.Z.D.)

3) The distance between the actual position of the ship and the G.P. is known. (T.Z.D.).

4) The numerical difference between C.Z.D. & T.Z.D. is a small value known as the *Intercept*

5) The portion of the position circle, nearer to the D.R., considered as a straight line (Since the radius of the circle is thousands of nautical miles.

The Position Line can be constructed on the navigational chart in steps as follows:

- 1) From the D.R. position; draw the true bearing of the body.
- Starting from the D.R. position; measure the intercept in N.M.^s in the direction of the body if C.Z.D. > T.Z.D. (the intercept is denoted <u>towards</u>) and in the opposite direction if C.Z.D. < T.Z.D. (the intercept is denoted <u>away</u>) sees next figures.
- 3) From the end point of measuring the intercept construct a perpendicular to the true bearing. This perpendicular line is the Position Line.

Important Comment

Whatever the error in the D.R. position used in the solution, we shall obtain the same P.L. on the chart. Only one condition must be applied:

The P.L. must be constructed from the D.R. position used in the solution.

This is proved easily by solving the same sight by many assumed D.R (i) positions. The result of solutions will be different values of Intercept (i) and the same value of true bearing (approximately). If we construct the Position Lines, they will be coinciding.

According to this fact, the concept of the chosen position was used to simplify the calculations of CZD when using sight reduction tables; but this is not the case when using the hand calculator.

Solved Example

Three navigators (A, B and C) solve the same star sight at the same GMT; but they used different positions as follows:

	DR position of solution	Results of solution			
	DR position of solution	True Bg.	Intercept		
Navigator (A)	44° 52`.6 N; 123° 20`.5 W	300°.0	3`.5 Away		
Navigator (B)	44° 50`.0 N; 123° 22`.5 W				
Navigator (C)	44° 54`.1 N; 123° 18`.0 W				

Assuming that the true bearings are the same from all points in the neighborhood of the DR position (A); Use a plotting sheet (Or a paper) to extract intercepts must be obtained for navigators (B) and (C)?

Answer:

Step (1): To find d. Lat. & dep. for each of DR $_{\rm B}$ and DR $_{\rm C}$ with respect to DR $_{\rm A}$

Lat. A	44° 52`.6 N	Long. A	123° 20`.5 W
Lat. B	44° 50`.0 N	Long. B	123° 22`.5 W
d. Lat.	2`.6 S	d. Long.	2`.0 W
		dep.	1`.4 W
		-	
Lat. A	44° 52`.6 N	Long. A	123° 20`.5 W
Lat. c	44° 54`.1 N	Long. c	123° 18`.0 W
d. Lat.	1`.5 N	d. Long.	2`.5 E
	•	den	1`8E

Step (2): Plotting and Extracting results;
Intercept for navigator $B \rightarrow 3^{\circ}.4 A$
Intercept for navigator $C \rightarrow 2$.6 A

Astronomical Position Line Suggested Pattern of Solution (case of star)

In case of given ZT	In case of given Twilight			
Z.T.	\approx LMT			
Z.N. (±)	\pm Long. (W/E)			
G.D.	GD			
Ch. Time	Ch. Time			
Ch. Error	Ch. Error			
G.M.T.	G.M.T.			

GHA γ Incr. γ		
SHA	Dec.	
GHA		
± Long.		
LHA		

LHA	А	
Lat.	В	
Dec.	С	
	Az.	
	T. Bg.	

Sext. alt.	
IE ()	
Obs. alt.	
Dip (-)	
App. alt.	
Corr. \underline{n} ()	
True alt.	
90 (~)	
TZD	
CZD	
Inter.	

Astronomical Position Line Suggested Pattern of Solution (case of sun)

Z.T. Z.N. (±)	
G.D.	
Ch. Time	
Ch. Error	
G.M.T.	

GHA	Dec	
Incr.	d. Corr. <u>n</u>	
GHA	C. Dec.	
± Long.		
LHA		

Cos [CZD] = Cos[LHA]* Cos[Lat.]* Cos[Dec.] ± Sin[Lat.]* Sin[Dec.] Cos[CZD] = Cos[------]* Cos[------]* Cos[-------] + Sin[-------]* Sin[-------] Cos [CZD] = ------ → CZD ------

LHA	А	
Lat.	В	
Dec.	С	
	Az.	
	T. Bg.	

Sext alt	
Dext. uit.	
IE ()	
Obs. alt.	
Dip (-)	
App. alt.	
Corr. \underline{n} ()	
True alt.	
90 (~)	
TZD	
CZD	
Inter.	

SOLVED EXAMPLE (1) At Evening Civil Twilight on March 13th ; 1990. Ship was in D.R. position (39° 59`.0 N; 160° 59`.0 W)

- I.E. 2`.2 on the arc
- Ht. of eye 13.3 m

• Ch. error 3m 41s slow

The star *Alpheratz* was observed as follows:

- Ch.Time 05h 10m 09s
- Sext.alt. 20° 20`.0

Find the elements of the position line by Intercept method. Answer:

1st Step: To Adjust Time Of G.M.T.

L.M.T.	1830 Mar. 13 th
\pm Long. w/ E	1044 (+)
G.D.	0514 Mar. 14 th
Ch. Time	5h 10m 09s
Ch. Error	3m 41s (+)
G.M.T.	05h 13m 50s Mar. 14 th
2 nd Step: To Extract	L.H.A. & Dec.
G.H.A.	246 33.5
Incr.	3 28.1
SHA	358 02.0 Dec.* N 29 02.2
G.H.A.	
$\pm \log (E/W)$	160 59.0 (-)
L.H.A.	087 04.6

3rd Step: To Calculate C.Z.D

 $Cos [CZD] = Cos[LHA]* Cos[Lat.]* Cos[Dec.] \pm Sin[Lat.]* Sin[Dec.]$ $Cos[CZD] = Cos[087 \ 04.6]* Cos[39 \ 59.0]* Cos[29 \ 02.2] + Sin[39 \ 59.0]* Sin[29 \ 02.2]$ $Cos [CZD] = 0.34605 \longrightarrow CZD \ 69 \ 45.3$

4th Step: To Correct Sextant Altitude

5th Step: To Find True Bearing

Sext alt	20 20.0	L.H.A.
I.E.	2.2 (-)	Lat.
Obs. Alt	20 17.8	Dec.
Dip	6.4 (-)	
App alt	20 11.4	
Corr.	2.6 (-)	
T. alt	20 08.8	
90°	90	
T.Z.D.	69 51.2	
C.Z.D.	69 45.3	
Intercept	5.9 A	

087 04.6	А	0.043 S
39 59.0 N	В	0.556 N
29 02.2 N	С	0.513 N
	Az.	N 68.5 W
	T. Bg.	291.5

SOLVED EXAMPLE (2) At Z.T. 1455 on November 15th ; 1990; Ship was in D.R. position (40° 15`.0 S; 161° 00`.0 W). • I. E. 1`.2 off the arc Ht. of Eye 12.7 m • Ch. Error • 3m 11s fast Lower Limb of the Sun was observed as follows: 01h 51m 50s • Ch.Time • Sext.alt. 42° 15`.0 Find the elements of the position line by Intercept method.

Answer:

1st Step:	To A	djust Time Of G.M.T.
Z.T.		1455 Nov. 15 th
Z.N.		11 (+)
G.D.		0155 Nov. 16 th

Ch. Time	1h 51m 50s
Ch. Error	03m 11s (-)
G.M.T.	1h 48m 39s Nov. 16 th

2nd Step: To Extract L.H.A. & Dec.

GHA	198 49.9	Dec.	18 37.6 S
Incr.	12 09.8	d. corr.	0.5 (+)
		C. Dec.	18 38.1 S
GHA	210 59.7		
\pm Long.	161 00.0 (-)		
LHA	49 59.7		

3rd Step: To Calculate C.Z.D

 $Cos [CZD] = Cos [LHA] * Cos [Lat.] * Cos [Dec.] \pm Sin[Lat.] * Sin[Dec.]$ Cos [CZD] = Cos [49 59.7]* Cos [40 15.0]* Cos[18 38.1] + Sin[40 15.0]* Sin[18 38.1] Cos [CZD] = 0.67139 — \rightarrow CZD 47° 49`.6

4th Step: To Correct Sextant Altitude

Sext alt	42 15.0
I.E.	1.2 (+)
Obs. Alt	42 16.2
Dip	6.3 (-)
App alt	42 09.9
Corr.	15.2 (+)
T. alt	42 25.1
90°	90
T.Z.D.	47 34.9
C.Z.D.	47 49.6
Intercept	14.7 T

5 th Step:	To Find True Bearing				
LHA	49 59.7	А	0.710 N		
Lat.	40 15.0 S	В	0.440 S		
Dec.	18 38.1 S	С	0.270 N		
		Az.	N 78.4 W		
		T. Bg.	281.6		

Theory of Pole Star

Theory of Pole Star

A special method of finding latitude, available in the <u>Northern Hemisphere</u>, utilizes the fact that Polaris is less than 1° from the north celestial pole. As indicated before, the altitude of the elevated pole above the celestial horizon is equal to the latitude. Since Polaris is never far from the pole, its observed altitude, with suitable corrections, is the latitude

The nature of these corrections as tabulated in the *Nautical Almanac* is suggested by inspection of figure shown in which the circle represents the daily path of Polaris around the north celestial pole Pn , as seen by an observer on earth looking along the axis $P_n P_s$. The line a b represents a small portion of the observer's meridian. Polaris is at upper transit at a and at lower transit at b.

Latitude is equal to the altitude <u>minus</u> the polar distance (P) when Polaris is at a and <u>plus</u> the polar distance when it is at b. When the star is at any point c, the Polaris correction is polar distance times the cosine of the local hour angle (i.e. correction = P. Cos LHA). Thus the correction is a function of LHA of the star, and hence also

of LHA_{Υ} , insofar as the difference between these quantities (the SHA) can be considered constant

The Polaris correction tables included in the Nautical Almanac Tables, are based on the following formula:

Latitude - corrected sextant altitude $= -P \cos h + \frac{1}{2}P \sin P \sin^{2} h \tan (\text{Latitude}).$ Where: P = polar distance of Polaris = 90 - Dec. $h = \text{local hour angle of Polaris} = \text{LHA}_{\Upsilon} + \text{SHA}.$

The value a_o which is a function of LHA_Y only, is the value of both terms of the above formula calculated for mean values of the SHA and Dec. of Polaris, for a mean latitude of 50°, and adjusted by the addition of a constant (58`.8).

The value a_1 , which is a function of LHAY and latitude, is the excess of the value of the second term over its mean value for latitude 50°, increased by a constant (0°.6) to make it always positive.

The value a_2 , which is a function of LHA_Y and date, is the correction to the first term for the variation of Polaris from its adopted mean position; it is increased by a constant (0`.6) to make it always positive.

The sum of the added constants is 1°, so that: Latitude = corrected sextant altitude $- 1^\circ + a_0 + a_1 + a_2$ The table at the top of each Polaris correction page is entered with LHA_{Υ} and the first correction (a_0) is taken out by a single interpolation. The second and third corrections (a_1 and a_2 respectively) are taken from the double entry tables without interpolation, using the LHA_{Υ} column with the *latitude* for the second correction and with the *month* for the third correction.

POLARIS (POLE STAR) TABLES, 1990 : 500 FOR DETERMINING LATITUDE FROM SEXTANT ALTITUDE AND FOR AZIMUTH					275							
L.H.A. ARIES	120°- 129°	130° 139°	140°- 149°	150°- 159°	160°- 169°	170°- 179°	180°- 189°	190°- 199°	200 ⁹ - 209°	210°- 219°	220°- 229°	230°- 239°
	a	a00	a	a0	a0	a0	a	a0	a0	ao	a	a0
ő	0 54.8	02.0	1 10.0	1 18.5	1 25.4	1 31.6	1 36.8	1 40.0	1 43.7	1 45.1	1 45.2	1 43.8
ĩ	55.6	03.7	11.6	19.2	26.1	32.2	37.3	41.2	43.9	45.2	45.1	43.6
2	56.4	04.5	12.4	19.9	26.8	32.8	37.7	41.5	44.1	45.2	45.0	43.4
3	57.2	05.3	13.2	20.6	27.4	33.3	38.2	41.8	44.2	45.3	44.9	43.2
4	58.0	06-1	14.0	21.3	28.0	33.8	38.6	42·I	44.4	45.3	44.8	42.9
	0 58.8	1 06.0	1 14.7	1 22.0	1 28.7	1 34.4	1 39.0	1 42.4	1 44.5	1 45.3	1 44.7	1 42.7
ő	0 59.6	07.7	15.5	22.7	29.3	34.9	39.4	42.7	44.7	45.3	44.5	42.4
7	1 00.5	08.5	16.2	23.4	29.9	35.4	39.8	43.0	44.8	45.3	44.4	42.1
8	01.3	09.3	17.0	24·1	30.2	35.9	40·2	43.2	44.9	45.3	44.2	41.8
9	02·I	10.1	17.7	24.8	31.1	36.4	40.2	43.4	45.0	45.5	44.0	41.2
10	1 02.9	1 10.9	1 18.5	1 25.4	1 31.6	1 36.8	I 40·9	1 43.7	1 45.1	1 45.2	1 43.8	I 41·I
Lat.	a1	<i>a</i> ₁	a1	<i>a</i> ₁	<i>a</i> ₁	a1	<i>a</i> ₁	a1	<i>a</i> ₁	a1	a1	a1
0	'	'		'	'	,	,	1	1	1	1	1
0	0.5	0.5	0.3	0.3	0.4	0.4	0.2	0.6	0.0	0.0	0.0	0.0
10	-3	•3	: 3	4	4	-5	5	.0	.0	.0	.0	-0
20	3	3	4	4	4	1.5	.5	0' A	.6	.0	.6	-6
30	4	4	4			5	0	0			Ů	Ů
40	0.2	0.2	0.2	0.2	0.2	0.6	0.6	0.6	0.6	0.6	0.6	0.6
45	.5	-5	.5	•6	•6	•6	.6	•6	-6	.6	•6	•6
50	•6	•6	•6	•6	•6	•6	•6	.6	-6	.6	.6	•6
55	.7	.7	.7	.7	.0	.0	.0	.0	.0	.0	0	.0
60			·8	.7	.7	.7	.0	0.	.0	.0	.0	.0
62	o·8	o·8	0.8	o·8	0.7	0.7	0.2	0.6	0.6	0.6	0.6	0.6
64	•9	•9	•8	·8	·8	.7	.7	•6	•6	•6	•6	•6
66	0.9	0.8	0.9	•9	-8	.7 -	.7	•6	•6	•6	•6	•6
68	I·O	1.0	I.0	0.9	0.8	0.8	0.7	0.6	0.6	0.6	0.6	0.6
Month	<i>a</i> ₂	<i>a</i> ₂	a2	<i>a</i> ₂	a2	a2	<i>a</i> ₂	a2	a2	a2	<i>a</i> ₂	<i>a</i> ₂
Jan.	0.7	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.2	0.2	0.2
Feb.	-8	-8	.7	•7	•7	-6	-6	.5	.5	.5	•4	•4
Mar.	0.9	0.9	0.9	0.9	-8	-8	.7	.7	•6	•6	.5	-4
Apr.	1.0	1.0	I.O	I.O	0.0	0.0	0.0	0.8	0.8	0.7	0.6	0.6
May	0.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	.8	-8	.7
	- 6											6

Solved Example:

At the mornin	g twilight of Aug	ust 12 th ; 1990;
Ship was in D	.R. position (27°	15`.0 N; 146° 45`.0 W)
•	Ch. Error	3m 10s slow
•	I. E.	2`.0 off the arc
•	Ht. of eye	13.5 m
The star Polar	ris was observed	as:
•	Ch. Time	02h 48m 11s
•	Sext. Alt.	28° 14`.8
Calculate:		
	1)The true latitud	le of the observer.
	2)The direction o	f the P.L.

Answer:

\approx L.M.T. ± Long. w/ E (+)	0500 Aug 12 th 0947
G.D.	1447 Aug 12 th
Ch. Time	02h 48m 11s
Ch. Error (+)	3m 10s
G.M.T.	14h 51m 21s Aug.12 th

G.H.A. γ	170 45.7
Incr.	12 52.4
G.H.A. γ	183 38.1
$\pm \log (E/W) (-)$	146 45.0
L.H.A. γ	36 53.1

Sext. alt.	28 14.8
IE (+)	2.0
Obs. alt.	28 16.8
Dip (-)	6.5
App. alt.	28 10.3
Corr. <u>n</u> (-)	1.8
True alt.	28 08.5
a _o	0 12.3
a 1	0.6
a 2	0.3
(-) 1°	1
True Latitude	27 21.7 N

True Bearing $000^{\circ}.0 \rightarrow P.L.$ (090 °.0 / 270 °.0)

Preparation of Star Sights

PREPARATION FOR STAR SIGHTS

The work of obtaining a fixed position from star sights breaks down into a number of stages and operations that we recommend to be fulfilled in the following order:

(case of 3-stars is concerned)

- 1) Preparation for observations in twilight.
- 2) Taking star sights.
- 3) Working sights
 - a. Computations.
 - b. Plotting Sights (on a paper).
 - c. Triangle of Errors.
 - d. Obtaining the most probable observed position.

Preparation for observing stars in duration of twilight

Practically, at the duration of the *evening twilight*, the bright stars can be observed when the center's disk of Sun reaches about 3° below the western horizon, while it will be difficult to observe the stars when center's disk of Sun reaches about 9° below, since the horizon becomes hazy (not clearly defined).

Reversely, at the duration of the morning twilight, the visible horizon starts to be defined when the center's disk of Sun reaches 9° below the eastern horizon, and when it reaches 3° below, the bright stars begins to disappear.

See following diagrams for Morning Twilight and Evening Twilight.

MORNING TWILIGHT

EVENING TWILIGHT

This indicates that the times of the *civil twilight* tabulated in the *Nautical Almanac* are actually the middle time of taking star sights. So, to prepare for evening or morning star sights we proceed as follows:

- 1. Extract DR₁ position, corresponding to the assumed ZT ,from the chart.
- 2. Calculate $GD = ZT \pm ZN$
- 3. Calculate GMT_1 of the next civil twilight to the nearest minute. (1st approximation)
- 4. Make run through the interval $(\Delta T = GMT_1 GD)$ to obtain the corresponding position DR₂.
- 5. Calculate GMT₂ of the next civil twilight to the nearest minute. (2nd approximation.)
- 6. Make run through the interval ($\Delta T = GMT_2 GMT_1$) to obtain the corresponding position DR₃.
- 7. Calculate LHAY at GMT₂, using DR₃ Long.
- By the knowledge of DR₃ Lat. & LHAY ; use the SIGHT REDUCTION TABLES FOR AIR NAVIGATION (vol. 1) or any other device (star glob / rude star identifier), to select combinations of 3- suitable stars regarding the following considerations :

Selection of stars for a fix

In making a choice, the following three things must be considered, listed from highest priority to least priority.

First priority: the azimuth differences between the stars should be sufficient to give a reliable fix. The ideal azimuth spread would be for the bearings of the stars to differ by 120°.

Second priority: the stars should be at altitudes between 15° and 70° (where possible , with approximately the same altitude), since unusual refraction can introduce large errors in low altitude sights, and accurate sights at very high altitudes are difficult to obtain.

Third priority: the magnitude of the star. Obviously first magnitude stars are easier to see and to shoot while the horizon is still clearly defined.

The selected stars are arranged in a tabular format similar to that below:

Star name		
Az.		
Alt.		
Mag.		

Make also a rough sketch showing the bearings relative to the course of the ship; this will make identification easier.

As an example this done as follows assuming True Course 020°

Star name	Dubhe	Sirius	Hamal
Az.	037	166	269
Alt.	41	32	39
Mag.	2.0	- 1.6	2.2

172

Note:

SIGHT REDUCTION TABLES FOR AIR NAVIGATION (AP 3270, vol. 1) solves the problem by giving the names of 7-stars suitable for observation; three of them are marked with an asterisk to distinguish them as the perfect 3-stars to be observed regarding the priorities mentioned before. The names of first-magnitude stars are given in capital letters.

		1									L	AT	40	°N
LHA	He	Zn	Hc	Zn										
4	•Dub	he	REGU	LUS	PROC	YON	+SIRI	JS	RIG	EL 🛝	ALDEB	ARAN	•Mirf	ak
90 91 92 93 94	41 02 41 30 41 58 42 26 42 54	037 037 037 038 038	29 13 29 58 30 43 31 28 32 14	099 100 100 101 102	48 50 49 19 49 47 50 13 50 39	141 142 144 145 147	32 23 32 32 32 41 32 49 32 56	167 169 170 171 172	40 36 40 23 40 10 39 55 39 40	195 196 198 199 200	60 04 59 32 58 58 58 24 57 49	224 226 227 229 230	60 54 60 15 59 36 58 58 58 19	303 303 303 303 303
95 96 97	43 22 43 50 44 18	038 038 038	32 58 33 43 34 28	103 103 104	51 04 51 28 51 51	148 149 151	33 02 33 07 33 11	173 174 175	39 23 39 06 38 48	201 203 204	57 13 56 37 56 00	232 233 234	57 40 57 01 56 23	303 303 303

Solved Example

At Z.T. 0005 January 2nd ; 1990.

Ship was in DR Position (32° 45`.0 S; 173° 20`.0 E)

- Steaming Speed 19.5 K
- Steering compass 330°.0
- Variation 3°.0 E 1980 (6' E)
- Deviation 1°.0 W

Calculate:

- True course to steer.
- GMT of morning civil twilight (to the nearest minute)
- DR position at morning civil twilight
- Regarding tables of Air Navigation; Name the 3-selected stars recommended and their predicted altitudes & bearings (to the nearest degree).

Answer:

1) To find True Course to Steer

Var.1990=Var.1980 + (6`x10) =3°.0E+1°.0=4°.0E

Variation	4.0 E	C. Co to steer	330.0
deviation	1.0 W	C. Error	3.0 E
C. Error	3.0 E	T.Co.to steer	333.0

2) To find G.M.T. of morning civil twilight

Z.T.	0005 Jan 2 nd
Z.N. (-)	12
G.D.	1205 Jan 1 st

1st Approximation

L.M.T.	0436 Jan 2nd
Lat. C ⁿ (-)	8
L.M.T.	0428 Jan 2 nd
\pm Long. w/ E	1133 (-)
G.M.T.1	1655 Jan 1 st
G.D.	1205 Jan 1 st
Interval	0450

Distance Run = $(04h 50m) \times 19.5 = 94.3 M$

True Course to steer **333.0**

<u>d. Lat.</u>	<u>dep.</u>		Mean latitude	<u>d. Long.</u>
84.0 N	42.8 W		(32 03.0)	50.5 W
DR ₁ Position	Lat.	32 45.0 S	Long.	173 20.0 E
	d. Lat.	01 24.0 N	d. Long.	0 50.5 W
DR ₂ Position	Lat.	31 21.0 S	Long.	172 29.5 E

2nd Approximation

L.M.T.	0436 Jan 2 nd
Lat. C ⁿ (-)	4
L.M.T.	0432 Jan 2 nd
± Long. w/ E	1130 (-)
G.M.T.2	1702 Jan 1 st
G.M.T.1	1655 Jan 1 st
Interval	0007 (+)

Distance Run = $(00h \ 07m) \times 19.5 = 2.3 M$ True Course to steer 333.0

<u>d</u> 2.	<u>l. Lat.</u> .0 N	<u>dep.</u> 1.0 W		Mean 1 (31	atitude 20)	<u>d. I</u> 1.2	W	
	DR ₂ Po	sition	Lat. d. Lat.	31 21	.0 S 2.0 N	Long. d. Long.	172	29.5 E 1.2 W
	DR ₃ Po	sition	Lat.	31 19	0.0 S	Long.	172	28.3 E

3) To Extract the 3-Recommended Stars G. M.T. 17h 02m 00s Jan 1st \rightarrow

G.H.A. γ	356 05.1
Incr.	30.1
G.H.A. γ	356 35.2
± Long. E/W	172 28.3 E
L.H.A. γ	169 03.5

Zn Hc

Zn Hc

LAT 31°S Zn Hc

Zn

Zn Hc

 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 Hc
 Zn
 <thZn</th>
 Zn
 Zn
 Zn</

Zn Hc

Regarding tables of Air Navigation; and the arguments DR Latitude ≈ 31 S L.H.A. $\gamma \approx 169$

	4) The Sta	urs recommer	nded are:	157 158 159	46 46 46 4	50 44 35	353 352 350	40 40 41	27 0 49 0	026 025 024	44 28 45 18 46 07	3 074 3 073 7 073	52 53 53	42 01 19	158 159 159	41 40 40	27 50 14	225 225 225	37 36 36	44 53 01	272 272 271	35 35 34	58 15 32	305 304 303
1 2	Star Name Antares Canopus	Altitude 22.5 34	True Bearing 108 224	160 161 162 163 164	46 46 46 45 45 45 45 45 45 45 45 45 45 45 45 45	26 16 04 51 37	349 348 346 345 343	41 3 41 3 42 0 42 4 42 4	31 0 50 0 08 0 26 0 42 0	023 022 020 019 018	46 56 47 45 48 33 49 22 50 10	6 072 6 071 8 070 2 069 0 069	53 53 54 54 54	37 54 11 28 44	160 161 161 162 162	39 39 38 37 37	37 01 25 49 12	225 225 225 225 225 225	35 34 33 32 31	10 18 27 36 44	271 270 270 269 269	33 33 32 31 30	49 05 21 36 51	302 301 300 300 299
3	Regulus	44	337	165 166 167 168 169 170 171 171 172 173 174	AR 21 1 21 5 22 3 23 1 23 4 24 2 25 0 25 3 26 1 26 5	CTUR 14 53 32 10 48 25 02 39 14 50	050 049 048 048 047 046 045 045 045 044 043	19 20 21 22 23 24 24 24 25 26	NTARE 14 15 16 17 18 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 19 19 19 19 19 19 19 19 19 19	ES 110 1109 109 108 108 107 107 107	AC 54 59 55 14 55 28 55 41 55 54 55 41 55 54 56 07 56 18 56 29 56 40 56 50	RUX 9 163 4 164 3 164 1 165 4 166 7 166 3 167 9 168 0 169 0 169	*6 36 35 34 34 33 33 32 31 31	24 11 35 00 24 11 35 00 24 48 12	PUS 225 225 225 225 224 224 224 224 224 224	30 30 29 28 27 26 25 24 23	SIRIU 53 01 10 19 27 36 45 53 02 11	S 268 267 267 266 266 265 265 265 264 264	P 29 28 27 27 26 25 24 23 23	8001 06 21 35 49 02 16 29 41 54 06	298 297 296 295 294 294 294 293 292 292	+5 45 44 44 43 43 43 42 42	EGUL 22 05 48 23 49 27 04 40 16	US 342 341 339 338 337 336 334 333 332 331
				175 176 177 178 179	27 2 27 2 28 3 29 0 29 3	24 59 32 05 38	042 041 040 039 039	27 2 28 2 29 0 29 3 30 4	24 1 13 1 03 1 53 1 42 1	106 106 105 105 104	56 59 57 07 57 15 57 22 57 28	9 170 7 171 5 172 2 173 3 173	30 30 29 28 28	37 01 26 50 15	224 224 223 223 223	22 21 20 19 18	20 29 38 47 56	263 263 262 262 262 261	22 21 20 19	18 30 42 54 05	291 291 290 289 289	41 40 40 39	50 23 56 27 58	329 328 327 326 325

Zn Hc

 Hc
 Zn
 Hc
 Zn
 Hc

 PROCYON
 REGULUS
 • Suha

 46 39
 038
 16
 32
 065
 51
 04

 47 11
 037
 17
 18
 064
 51
 47

 47 41
 035
 18
 04
 063
 52
 31

 48
 10
 034
 18
 50
 063
 52
 31

 48
 38
 033
 19
 35
 062
 53
 58

 49
 05
 031
 20
 1
 061
 55
 24

 49
 57
 028
 21
 50
 050
 56
 57

 50
 20
 027
 22
 35
 55
 56
 50
 50
 33
 026
 23
 19
 059
 57
 33

Simultaneous Star Sights
INTRODUCTION

The work of obtaining a fixed position from two star sights breaks down into a number of stages and operations that we recommend to be fulfilled in the following order:

- A. Preparation for observations in twilight.
- B. Taking star sights.
- C. Working sights
 - a) Computations.
 - b) Plotting Sights (on a paper).
 - c) Obtaining the observed position.

The process A was explained in the previous lecture (5) in details, we start this lecture by process B.

- B. Taking star sights
- 1. Before taking observations :
 - a) When possible , check the sextant for side error
 - b) When possible, take the index error before and after sights.
 - c) If a deck watch or other timepiece is available and suitable for observations, compare it with the chronometer.
 - d) Make sure that the minute and second hands of the deck watch are, lined up, so that there can be no possibility of an error in the reading of the minute hand. Time should be read to the nearest second.
- 2. Between 10 to 15 minutes prior to commencement of observations, take the sextant to the site of observations.
- 3. Measure a round of 3 (or 5) altitudes of each star and note time by watch or chronometer. It is more convenient to take these observations with an assistant.
- 4. Observe stars as early as possible at evening twilight and as late as possible at morning twilight. The horizon will then be clearest.
- 5. The brighter star is observed in the evening at the very beginning of twilight; the fainter stars in the morning.
- 6. In the morning and evening twilight, start observations of stars above the eastern horizon first.
- 7. In clear weather, take observations from the highest convenient position.
- 8. In fog, haze or mist, take observations from the lowest convenient position.
- 9. When the ship is rolling heavily, errors due to rapidly changing dip may be reduced, and more accurate observations obtained, by observing from a position close to the center line of the ship.
- 10. Having brought the star to the horizon, always swing the sextant a few degrees each side of the vertical plane to make the body appear to describe the arc of a circle. This arc should then be raised or lowered by means of the micrometer drum, until just touches the horizon.
- 11. Record the true course, speed of vessel, air temperature and pressure.

C. Working sights

a) Computations

- i. Using the recorded time ZT and log reading, take DR position from map to within 0`.1.
- ii. For each of the three stars:
 - Compute the mean sextant altitude and the mean chronometer time.
 - Compute the exact instants of GMT and date.
 - Extract the GHA & Dec. from the Nautical Almanac Tables.
 - Compute LHA = GHA \pm DR Long. E/W
 - Compute CZD using cosine formula; by the knowledge of LHA, DR Latitude and Dec.
 - Compute True Bearing (T. Bg.) using A/B/C tables.
 - Correct the mean sextant altitude to get true altitude, hence TZD, by applying the rule: $TZD = 90^{\circ}$ - true altitude.
 - Apply the equation : Intercept (n) = TZD CZD ; and denote it Away or Towards according to the following :
 - a) denoted Away (A) if ; TZD > CZD
 - b) denoted Towards (T) if ; TZD < CZD
 - b) Plotting Position Lines

To plot a PL at a subsequent or earlier time we first calculate the distance run to transfer as follows:

- 1. Calculate the interval of time ΔT_i = Required GMT Actual GMT _i
- 2. Calculate distance run $d_i = \Delta T_i$. V

Steps:

- From the DR position lay off the true course.
- Measure the distance run d_i on line of true course and mark a point (i).
- From the point (i), lay off the Az. (i)
- Measure the Intercept n (i) on the line of Az. (i), then construct a perpendicular to Az. (i) at the end point of measured intercept n (i).

This perpendicular is actually the transferred position line.

c) Obtaining the most probable observed position

Once you finish these steps, there will be a triangle named *triangle of errors*.

The most probable observed position (*MPOP*) may be situated inside or outside this triangle according to the distribution of the bearings of the stars on the circle of the horizon. *MPOP* will be inside the *triangle of errors* in case of distribution all-round, and outside in case of being subtended in only one half (180°). To solve this problem, do the following steps:

- Transfer every PL in the direction of its bearing by a chosen suitable distance (fixed distance for all). Another similar triangle is obtained.
- Join the similar vertices of the two triangles. The point of intersection is the most probable observed position MPOP, at the time required (i.e. time corresponding to the DR used in solving sights).
- Lay off a perpendicular from fixed position to DR Lat. This is d. Lat.
- Lay off a perpendicular from fixed position to DR Long. This is departure.
- Convert departure into d. Long. Where d. Long. $=\frac{dep}{\cos DR \, lat}$.
- Add d. Lat. & d. Long. to the DR (Lat. ; Long.) to get the coordinates of the fixed position.

Solved Example (1)

Evening twilight on December 10th; 1990. Ship was in DR Position (38° 39`.0 S; 170° 40`.0 W) Where:

•	Steaming Speed	17.4 K
•	Steering compass course	310°.0
•	Variation	4°.5 E 1985 (6°E)
•	Deviation	1°.5 E
•	Ch. Error	6m 10s slow

The following are the results of solving 3-simultaneous star sights:

		Elements of P.L.	
Star Name	Ch.Time	True Bearing	Intercept
Menkar	07h 10m 00s	038°.0	1.5 T
Adhara	07h 15m 05s	290°.0	2.0 T
Atria	07h 20m 10s	199°.0	1.0 A

Find the most probable observed position at G.M.T. 07h 20m 00s Dec. 11th

Answer:

To find True Course to Steer

Var. $(1990) = 4^{\circ}.5 \text{ E} + 0^{\circ}.5 = 5^{\circ}.0 \text{ E}$		C. Co to steer	310° 0	
Variation5°.0 Edeviation1°.5 EC. Error6°.5 E		C. Error (+)	6°.5	
		T.Co.to steer	316°.5	

Calculations of Run:

Menkar Adhara Atria Ch. Time Ch. Error (+) $7h\ 10m\ 00s$ $7h \ 15m \ 05s$ 7h 20m 10s 6m 10s 6m 10s 6m 10s 7h 21m 15s 7h 20m 00s 7h 26m 20s 7h 20m 00s G.M.T. 7h 16m 10s R.G.M.T. 7h 20m 00s Interval 0h 03m 50s (+) 0h 01m 15s (-) 0h 06m 20s Dist. Run $1^{1}.1 (+)$ $0^{-}.4$ (-) 1`.8 (-) kar 2 1 Π Adhara Ш 2 Í Atria

Plotting:

DR Position	Lat.	38 39.0 S	Long.	170 40.0 W
	d. Lat.	1.3 N	d. Long.	0.5 W
MPO Position	Lat.	38 37.7 S	Long.	170 40.5 W

Solved Example (2)

Morning twilight on August 18th Ship was in DR Position (40° 00'.0 S; 162° 35'.0 E) Steaming Speed 17.8 K Steering compass course 037°.5 Variation (1975) 0°.5 W (decreasing 4' annually) Deviation 3°.5E Ch. Error 1m 45s slow

The following are the results of solving 3-simultaneous star sights:

		Elements of P.L	
Star Name	Ch. Time	True Bearing	Intercept
Aldebaran	07h 20m 10s	009°.0	1`.1 T
Sirius	07h 24m 30s	068°.0	2`.0 A
Avior	07h 28m 15s	139°.0	1`.5A

Find the most probable observed position at G.M.T. 19h 30m 00s Aug 17^{th} .

Answer:

To find True Course to Steer

Var. $(1990) = 0^{\circ}.5 \text{ W} - 1^{\circ}.0 = 0^{\circ}.5 \text{ E}$

Variation	0°.5E
deviation	3°.5E
C. Error	4°.0 E
C. Co to steer	037° 5
C. Error $(+)$	4°.0
T.Co.to steer	041°.5

Calculations of Run:

	Aldebaranl	Sirius	Avior
Ch. Time Ch. Error (+)	19h 20m 10s 1m 45s	19h 24m 30s 1m 45s	19h 28m 15s 1m 45s
G.M.T.	19h 21m 55s	19h 26m 15s	19h 30m 00s
R.G.M.T.	19h 30m 00s	19h 30m 00s	19h 30m 00s
Interval	0h 08m 05s (+)	0h 03m 45s (+)	0h 00m 00s
Dist. Run	2`.4 (+)	1`.1 (+)	0.´0

Plotting

Long Run Sights

ROUTINE AND PRACTICAL SUGGESTIONS FOR OBTAINING A RUNNING FIX of THE SUN (Long Run Sights)

A. Taking sights

- 1. Before starting observations:
 - a) Prepare sextant for taking sun altitudes, make a rapid check of sextant errors, and take up a position for observations 10 to15 minutes ahead of time, but do not keep the instrument in the sun.
 - b) Compare deck watch (or other timepiece) with chronometer, or stop watch with chronometer if the former is used.
- 2. Determine the index correction with a check
- 3. Take a series of 3 (or 5) sun altitudes and note the time for each one (using watch or chronometer): it is common practice to measure the altitude of the lower limb of the sun.
- 4. When measuring the mean of the altitudes (or after the measurement), note and record ZT, log. lr, True course , ship's speed , height of observer's eye , temperature and pressure of air (if $h < 30^{\circ}$). Take compass bearing of the sun (C. Bg.1)
 - B. Working first sight
- 1. Using ZT and log take from chart DR₁ (Lat.; Long) to within 0`.1.
- 2. Compute the arithmetic mean of the sextant readings and DWT^s.
- 3. Correct mean reading of sextant with corrections and obtain TZD.
- 4. Compute the accurate UT (GMT)
- 5. Obtain LHA and Dec. from nautical almanac.
- 6. Compute CZD and TBg₁ from formulas and obtain Intercept₁.
- 7. After working the sights, again take the sun bearing (C Bg.₂) and note
- 8. Take measure to enhance accuracy of dead reckoning between observations:
 - a) Check corrections of compass, distance log, current and drift.
 - b) Obtain the ship's run S in three ways and take the most reliable one or the arithmetic mean;
 - c) Do the plotting on a large scale chart; if no such chart is available or the run is very long, obtain DR₂ by rules of sailing.
 - C. Second Set of Sights and their Working
- 1. If visibility of the sun or horizon deteriorates (increased cloud cover, approach of fog, etc.) or if there is any other insistent necessity, the second set of observations are carried out without waiting for a computed instant.
- 2. Under ordinary conditions, the second set of observations is executed after the specified time interval, like the first set.
- 3. When measuring the mean of the altitudes, note ZT and log. If conditions have changed, obtain other data as well.
- 4. Working the second set of observations is done in a similar fashion to that for the first set, but with DR₂ obtained at the second mean instant.

Solved Example

Z.T. 1312 Nov. 13th ; 1990 Ship was in DR position (34° 53`.0 S; 32° 25`.0 W); Ship was steaming as follows:

Compass course	e to steer $344^{\circ}.0$
Variation	2°.5 E 1980 (3' W)
Deviation	5°.0 W
Speed	18.0 k
Chronometer en	rror 01m 19s slow
Index error	2`.1 off arc
Height of eye	10.5 m
1 st sun sight at Ch. Time Sextant alt.	03h 12m 05s when solved gave: 65° 25`.5 (L.L)
2 nd sun sight at Ch. Time Sextant alt.	05h 20m 31s when observed gave: 41° 20`.0 (L.L)

Find the observed position at the time of the 2^{nd} sight.

Answer:

Solution of the 1st Sun sight:

1 st Step: To Find G.M.T			
Z.T.1	1312 Nov 13		
Z.N. (+)	2		
G.D.1	1512 Nov 13		
Ch. Time 1	03 12 05		
Ch. Error (+)	01 19		
G.M.T. 1	15 13 24 Nov 13 th		

2 nd Step: To Find L.H.A. & Dec.				
GHA	48 55.6	Dec	18 00.1 S	
Incr.	3 21.0	d. corrn $(+)$	0.2	
GHA	52 16.6	D. Dec.	18 00.3 S	
Long (-)	32 25.0			
LHA	19 51.6			

 $\begin{array}{c} 3^{rd} \text{ Step: To Calculate C.Z.D} \\ & \text{Cos} \ [\text{CZD}] = \text{Cos} \ [\text{LHA}]^* \ \text{Cos}[\text{Lat.}]^* \ \text{Cos}[\text{Dec.}] \pm \text{Sin}[\text{Lat.}]^* \ \text{Sin}[\text{Dec.}] \\ & \text{Cos}[\text{CZD}] = \text{Cos}[19\ 51.6]^* \ \text{Cos}[34\ 53.0]^* \ \text{Cos}[18\ 00.3] + \ \text{Sin}[34\ 53.0]^* \ \text{Sin}[18\ 00.3] \\ & \text{Cos} \ [\text{CZD}] = 0.91052 \longrightarrow CZD\ 24\ 25.3 \end{array}$

4th Step: To Correct Sextant Altitude

5th Step: To Find True Bearing

Sext alt	65 25.5	L.H.A.
I.E.	2.1 (+)	Lat.
Obs. Alt	65 27.6	Dec.
Dip	5.7 (-)	
App alt	65 21.9	
Corr.	15.8 (+)	
T. alt	65 37.7	
90°	90	
T.Z.D.	24 22.3	
C.Z.D.	24 25.3	
Intercept	3.0 T	

19 51.6	А	1.930 N
34 53.0 S	В	0.957 S
18 00.3 S	С	0.973 N
	Az.	N 51.4 W
	T. Bg.	308.6

To find True Course to Steer

Var. (1990) = 2.5 E - 0.5 = 2.0 E

Variation	2.0 E	C. Co to steer	344.0
deviation	5.0 W	C. Error (-)	3.0 W
C. Error	3.0 W	T.Co.to steer	341.0

To Find 2nd DR Position:

Z.T. ₂ Z N				
G.D.2				
Ch. Time ₂	05 20 31			
Ch. Error +	01 19			
G.M.T. 2	17 21 50			
G.M.T. 2	17 21 50			
G.M.T. 1	15 13 24			
Interval	02 08 26			
Distance Run =	(02 08 26) x	18.0 = 38.5	М	
	` ` ` `			
	distance	True Co.	d. Lat.	Dep.
Run	38.5	341.0	36.4 N	12.5 W
1 st sight	3.0 T	308.6	<u>1.9 N</u>	2.3 W
-			38.3 N	14.8 W

d. Long. = dep. / cos (m.Lat.) = 14.8 / cos (34°.6) d. Long. = 18.0 W

DR ₁ Position	Lat.	34 53.0 S	Long.	32 25.0 W
	d. Lat.	38.3 N	d. Long.	18.0 W
DR ₂ Position	Lat.	34 14.7 S	Long.	32 43.0 W

Solution of 2nd Sun Sight

2nd Step: To Find L.H.A. & Dec.

GHA	78 55.5	Dec	18 01.4 S
Incr.	5 27.5	d. corrn (+)	0.3
GHA	84 23.0	C. Dec.	18 01.7 S
Long (-)	32 43.0	_	
LHA	51 40.0	-	

3rd Step: To Calculate C.Z.D

 $Cos [CZD] = Cos [LHA]* Cos[Lat.]* Cos[Dec.] \pm Sin[Lat.]* Sin[Dec.]$ $Cos[CZD] = Cos[51 \ 40.0]* Cos[34 \ 14.7 \]* Cos[18 \ 01.7 \] + Sin[34 \ 14.7]* Sin[18 \ 01.7]$ $Cos [CZD] = 0.16670 \longrightarrow CZD \ 48 \ 34.2$

Sext alt	41 20.0	L.H.A.
I.E.	2.1 (+)	Lat.
Obs. Alt	41 22.1	Dec.
Dip	5.7 (-)	
App alt	41 16.4	
Corr.	15.2 (+)	
T. alt	41 31.6	
90°	90	
T.Z.D.	48 28.4	
C.Z.D.	48 34.2	
Intercept	5.8 T	

4th Step: To Correct Sextant Altitude

5th Step:	To Find	True	Bearing
-----------	---------	------	---------

51 40.0	А	0.538 N
34 14.7 S	В	0.415 S
18 01.7 S	С	0.123 N
	Az.	N 84.2 W
	T. Bg.	275.8
		•

Plotting:

From Plotting Sheet:

DR ₂ Position	Lat.	34 14.7 S	Long.	32 43.0 W
	d. Lat.	08.4 S	d. Long.	08.1 W
Fix. Position	Lat.	34 23.1 S	Long.	32 51.1 W

Noon Sight of the Sun

Noon Sight of Sun

Introduction

The chief engineer is responsible for preparing the noon report and it is sent by the master to the company and shore management at a fixed time on daily basis (normally it is sent during noon; hence it's called noon report).

Deck officer (normally 2^{nd} officer) assists the chief engineer in providing the required data, which are used to complete the noon report. The master has the overall responsibility to ensure that the noon report is sent to the company on time.

Below is a general overview of the content of a noon report and how they are recorded:

- Ship's Name: Name or Call sign of the ship
- Voyage number: Every noon report comes with the current voyage number where the ship is plying
- Date of the report: Date of noon report
- Time of the report: Time of noon report. Chief engineer and ship staff must ensure that the noon report is sent daily at same time
- Position of the ship : The position of ship taken from GPS of the ship in Latitude and Longitude at the time of noon (or time of report preparation)
- Average speed done since last submitted noon report in knots: The average speed is calculated out from the net speed of the ship in knots since last noon report
- Propeller Slip: The total revolutions of the propeller from noon to noon is obtained using revolution counter. The engine distance can be calculated using the pitch of the propeller provided by the manufacturer.
- Average RPM: Average RPM Of the propulsion engine/ engines
- Wind Direction and wind force: The force and direction of the wind
- Sea and swell condition: General sea and swell condition at the time of report preparation
- Distance to Next Port of call/ destination: The distance which the ship needs to cover to reach the next port
- Estimated Time of Arrival: The Deck officer will calculate the ETA for the next port of call
- R.O.B : Following "Remaining on board" are prepared by the chief engineer where he/she takes account of either all Fuel oil/lube oil/water present on board ship or excluding the oil/water which are in the daily consumption or service tanks to keep a safe margin
 - Fresh Water in MT
 - Fuel Oil in MT
 - LSFO in MT
 - Diesel oil in MT
 - LSDO in MT
 - Lube oil for ME in MT
 - Lube oil for Generator in MT
 - Hydraulic oil in MT

Meridian Altitude:

For a heavenly body when crossing the upper meridian, its meridian altitude (M. Alt.) is denoted N or S as the nearest cardinal point. The meridian zenith distance (MZD= 90° - M. Alt.) is denoted S or N respectively.

A) Regarding the figures below of the celestial sphere projected on the horizon plane, we conclude that the true latitude can be obtained by applying suitable equation of the following:

The general relation:

True Latitude = T.M.Z.D. $+ \sim$ Dec.

- If T.M.Z.D. and Dec. have same names add and give the Latitude that name.
- If T.M.Z.D. and Dec. have different names subtract and give the Latitude the name of the greatest.

Note:

The LMT of meridian passage of the sun is given in the daily pages of the *Nautical Almanac Tables*. So to prepare for noon sight we proceed as follows:

- 1. Extract DR₁ position, corresponding to the assumed ZT, from the chart.
- 2. Calculate $GD = ZT \pm ZN$
- 3. Calculate GMT_1 of the meridian passage to the nearest minute. (1st approximation)

LMT	
\pm Long. 1W/E	
GMT 1	\rightarrow This is the 1 st approximate GMT

- 4. Make run through the interval ($\Delta T = GMT_1 GD$) to obtain the corresponding position DR₂.
- 5. Calculate GMT₂ of the meridian passage the nearest minute. (2nd approximation.)

LMT	
\pm Long. ₂ W/E	
GMT 1	\rightarrow This is the 2 nd approximate GMT

6. Make run through the interval ($\Delta T = GMT_2 - GMT_1$) to obtain the corresponding position DR₃.

To find Accurate GMT

7. Since the LHA of the sun is 360° / 000° on the upper meridian of the observer; we obtain the accurate GMT of this instant applying the following steps:

To Find True Latitude

- 8. Calculate Dec. of the sun at GMT_2 .
- 9. Correct sext. alt. as common, then apply the general relation; True Latitude = T.M.Z.D. +/~ Dec.

Sext. mer. alt.	
IE (±)	
Obs. mer. alt.	
Dip (-)	
App. mer. alt.	
$Corr^n (+)$	
True mer. alt.	
90 (~)	
TMZD	
C. Dec. (~)	
True Latitude	

Solved Example

At Z.T. 0830; August 12th ; 1990 Ship was in D.R. position (40° 45`.0 S; 159° 42`.0 E)

- Ch. Error 1m 40s slow
 - I.E 1`.5 on the arc
- Ht. of eye 14.9 m
- C. Co. to Steer 115°
- Var. 1°.5 W; 1980 (6` E)
- Dev. 1°.5 W
- Speed 19.5 knots

Calculate the following:

•

1) G.M.T. of meridian passage of the True Sun to the nearest second.

- 2) Ch. Time of the same phenomena.
- 3) The true latitude of the observer; if the sextant meridian altitude of the lower limb of the sun was observed $33^{\circ} 40^{\circ}.0$ due North.

Answer:

T0 Correct Compass Course to Steer Var. (1990) = 1.5 W - 1.0 = 0.5 W

Variation	0.5 W
deviation	1.5 W
C. Error	2.0 W

C. Co to steer	115.0
C. Error $(+)$	2.0 W
T.Co.to steer	113.0

To find G.M.T. of Noon:

Z.T.	0830 Aug.	12 th
Z.N. (-)	11	
G.D.	2130 Aug.	11 th

1st Approximation

L.M.T.	1205 Aug. 12 th
\pm Long. w/ E (-)	1039
G.M.T.1	0126 Aug. 12 th
G.D.	2130 Aug. 11 th
Interval	0356

Distance Run = $(03h 56m) \times 19.5 \text{ k} = 76.7 \text{ M}$ True Course to steer **113.0**

<u>d.Lat.</u>	<u>dep.</u>		Mean latitude	<u>d.Long.</u>
30.0 S	70.6 E		41.0	93.5 E
DR ₁ Position	Lat.	40 45.0 S	Long.	159 42.0 E
	d. Lat.	30.0 S	d. Long.	1 33.5 E
DR ₂ Position	Lat.	41 15.0 S	Long.	161 15.5 E

2nd Approximation

L.M.T.	1205 Aug. 12 th
\pm Long. w/ E (-)	1045
G.M.T.2	0120 Aug. 12 th
G.M.T.1	0126 Aug. 12 th
Interval	0006 (-)

Distance Run = $(00h\ 06m) \ge 19.5 \ge 2.0 \ M$ True Course to steer (113.0 + 180) = 293.0

<u>d.Lat.</u>	<u>dep.</u>	τ	Mean latitue	de <u>d.Long.</u>
00.8 N	1.8 W		41 14.6	2.4 W
DR ₂ Position	Lat.	41 15.0 S	Long.	161 15.5 E
	d. Lat.	0.8 N	d. Long.	2.4 W
DR ₃ Position	Lat.	41 14.2 S	Long.	161 13.1 E

Accurate GMT & Ch. Time of Noon sight

LHA	360 00.0	
\pm Long. w/ E (-)	161 13.1	_
GHA	198 46.9	
Tab. GHA	$193 \ 43.1 \rightarrow$	01h
Incr.	$5 03.8 \rightarrow$	20m 15s
GMT	01h 20m 15s Aug. 12 th	
Ch. Error (-)	1m 40s	_
Ch. Time	01h 18m 35s	-

Extract declination at G.M.T.2

Dec.	15 06.2 N
d. $Corr^n$ (-)	0.3
C. Dec.	15 05.9 N

To Find True Latitude:

Sext. mer. alt.	33 40.0 N
IE (-)	1.5
Obs. mer. alt.	33 38.5 N
Dip (-)	6.8
App. mer. alt.	33 31.7 N
$\operatorname{Corr}^n(+)$	14.6
True mer. alt.	33 46.3 N
90 (~)	90
TMZD	56 13.7 S
C. Dec. (~)	15 05.9 N
True Latitude	41 07.8 S

Compass Error

Introduction

Compass readings, due to a number of internal and external causes, are subjected to systematic and random errors in magnitude, and to eliminate them from compass readings it is necessary to introduce a so-called total compass Error (C. E.)

When sailing in the open sea, the total compass error can only be found by taking bearings of celestial bodies. The magnitude and sign of C.E. are defined by the formula:

C.E. = T Bg. body - C Bg. body

Where: T Bg. body is the true bearing of the celestial body.

C Bg. body is the bearing of the body obtained by the compass.

Thus; the problem of determining the compass error is solved by taking the compass bearing of the body and computing its azimuth for that instant; the difference will be the compass error.

Obtaining compass error on steaming vessels is one of the most important missions of the watch officers. To check the corrections of the compasses is important through the watch when steady course and specially when altering courses.

Celestial bodies give a wide field to do this. Watch officer can obtain compass error by any of the following methods:

A. General or Time Method:

Where the Compass Bearing of a body of low altitude ($< 15^{\circ}$) above Eastern (or Western) horizon is taken and time is recorded.

B. Polaris Method (special case):

Where the Compass Bearing of the pole star is taken and time is recorded. This method can be applied in north latitudes up to 35° N.

C. Amplitude Method (when body is rising or setting):
Where the Compass Bearing of the body (specially the sun) is taken at the moment of theoretical rising or setting.

Azimuth Circle

The Compass Bearing must be taken directly, without reflection on the azimuth circle's mirror, to avoid errors of that mirror. To do that, altitude must be $< 15^{\circ}$.

A- General (or Time) Method

Any celestial body of altitude less than 15° can be observed directly to obtain its compass bearing to avoid using the azimuth mirror. The azimuth mirror has many kinds of errors which can affect the compass error obtained; azimuth mirror can be used to reflect the image of the body observed in emergency conditions up to 35° altitudes. For altitudes more than 35°; the compass correction obtained is <u>unreliable</u>.

Practical Procedures to Apply the Method:

- 1) Get the compass bearing of the chosen body. (C. Bg.)
- 2) Record the time of bearing. UT (G.M.T.)
- 3) Extract the D.R. position from the chart. (DR Lat. & DR Long.)
- 4) Using UT (G.M.T); Extract L.H.A. & Dec. of the body from the Nautical Almanac Tables.
- 5) Apply A/B/C/ tables (or equations) to obtain True Bearing (T. Bg.).
- 6) Apply the formula C. E. = T. Bg. C. Bg.; to obtain the compass error.

The previous steps are shown in the following flow chart:

Solved Example (1)

At Z.T. 2040 on September 13th ; 1990, ship was in D.R. position (29° 30`.0 N; 46° 40`.0 W). The following data were recorded:

- Ch. Error 5m 14s fast
- Variation (1978) 3°.0 E (decreasing 5' annually)

The star Arcturus was seen at low altitude on the western horizon.

It is required to check the error of the compasses .The star was observed as follows:

- Ch. Time 11h 45m 54s
- Compass Bearing 285°.0
- Gyro Bearing 286°.0

Calculate the error of each compass and the deviation.

Answer:

A. To find G.M.T.

Z.T.	2040 Sept. 13th
Z.N.	3 (+)
G.D.	2340 Sept. 13 th
Ch. Time	11 45 54
Ch. Error	- 5 14
G.M.T.	23 40 40 Sept. 13 th

B. To find L.H.A. & Dec.

G.H.A. γ	337 40.3		
Incr.	10 11.7		
SHA	146 11.5	C. Dec	19 13.9 N
G.H.A.*	134 03.5		
±Long.	46 40.0		
L.H.A.*	87 23.5		

C. To Find True Bearing

L.H.A.	87 23.5	А	0.026 S
Lat.	29 30.0 N	В	0.349 N
Dec.	19 13.9 N	С	0.323 N
		Az.	N 74.3 W
		T. Bg.	285°.7

- D. To find True Variation (1990): Var.₁₉₉₀ =Var.₁₉₇₈-(5x12) =3°.0 E - 1°.0 = 2°.0 E
- E. To find the errors & deviation

Compass		Gyro			
T. Bg.	285.7		T. Bg.	285.7	Ì
C. Bg.	285.0		G. Bg.	286.0	
C. Error	0.7 E		G. Error	0.3 High	-
Var.	2.0 E		_		
Dev.	1.3 W		-		

Solved Example (2)

At Z.T. 1725 on Jan. 15th ; 1990, ship was in D.R. position (31° 15`.0 S; 125° 22`.0 W). The following data were recorded: • Ch. Error 2m 56s fast • Variation (1986) 1°.4 E (decreasing 6` annually)

Sun was seen at low altitude on the western horizon.

It is required to check the error of the compasses .Sun was observed as follows:

- Ch. Time 01h 27m 24s
- Compass Bearing 264°.0
- Gyro Bearing 260°.0

Calculate the error of each compass and the deviation.

Answer:

A. To find G.M.T.

Z.T.	1725 Jan. 15 th
Z.N.	8 (+)
G.D.	0125 Jan. 16 th
Ch. Time	01 27 24
Ch. Error	- 2 56
G.M.T.	01 24 28 Jan. 16 th

B. To find L.H.A. & Dec.

G.H.A. Incr.	192 36.3 06 07.0	Dec. d. Corr.	21 01.2 S 0.2
		C. Dec	21 01.0 S
G.H.A.	198 43.3	-	
±Long.	125 22.0	_	
L.H.A.	73 21.3	_	

C. To Find True Bearing

L.H.A.	73 21.3	А	0.181 N
Lat.	31 15.0 S	В	0.401 S
Dec.	21 01.0 S	С	0.220 S
		Az.	S 79.3 W
		T. Bg.	259°.3

- D. To find True Variation (1990): Var. (1990) = 1°.4 E - 0°.4 = 1°.0 E
- E. To find the errors & deviation

Compass		Gyro		
T. Bg.	259.3	T. Bg.	259.3	
C. Bg.	264.0	G. Bg.	260.0	
C. Error	4.7 W	G. Error	0.7 High	
Var.	1.0 E	_		
Dev.	5.7 W	_		

Amplitude Definition:

It the angle measured on the horizon circle, from East or West point to rising or setting point of the heavenly body respectively.

- A. Proceed as follows to apply Amplitude method:
 - 1. Get the compass bearing of the sun when theoretical rising (setting).(C. Bg.)
 - 2. Calculate the time of theoretical rising (setting) (G.M.T.)
 - 3. Using G.M.T.; Extract declination Dec. of the sun from Nautical Almanac Tables.
 - 4. Extract the **D.R. Lat**. from the chart.
 - 5. By the knowledge of Dec. of the sun & DR La.t.; calculate the Amplitude applying the formula $\sin \text{Amp.} = \frac{\sin \text{Dec}}{\cos \text{Lat.}}$
 - 6. Obtain the True Bearing (T. Bg.) by applying the suitable equation of * or ** or from diagram shown in next page.
 - T. Bg. at Rising = $90^{\circ} \pm \text{Amp.} \rightarrow (+ \text{ for South Dec. } \& \text{ for North Dec.}) *$
 - T. Bg. at Setting = $270^{\circ} \pm \text{Amp.} \rightarrow (+ \text{ for North Dec. } \& \text{ for South Dec.}) **$
 - 7. Apply the formula C. Error = T. Bg. \sim C. Bg. To obtain the compass error.

The previous steps are shown in the following flow chart:

- N $T = B_{R} = 270$, Amp. W $T = B_{R} = 270$, Amp. W $T = B_{R} = 270$, Amp. $T = B_{R} = 270$, Amp. $T = B_{R} = 200$, Amp. T = 0, T
- B. Diagram of the relation between True Bearing and Amplitude

C. Condition to apply the formula of Amplitude

The Compass Bearing, in case of Amplitude method, must be taken when the lower limb of Sun's disc is nearly equals the semi-diameter. This is the condition to apply the formula of Amplitude.

Solved Example (3)

On April 11th 1990, Ship was in D.R. position (42° 15`.0 S; 161° 20`.0 E) *Sun* was observed at **theoretical rising** as follows:

- Compass Bearing 070°.0
- Gyro Bearing 080°.0
- Variation(1982) 3°.4 E (decreasing 3 annually)

Calculate the error of each compass and the deviation

Answer:

A. To find G.M.T. of Sunrise:

L.M.T.	0625 Apr 11 th
Lat. corr. <u>n</u>	+ 2
L.M.T.	0627 Apr 11 th
±Long	1045 (-)
G.M.T.	1942 Apr 10 th

B. To find Dec.

Dec.	8 03.7 N
d. Corr.	0.6
C. Dec	8 04.3 N

C. To Find Amplitude:

sin Amp. = sin Dec. / cos Lat. sin Amp. = sin (8 04.3) / cos (42 15.0) Amplitude = $10^{\circ}.9$

D. To Find True Bearing:

True Bearing $= 90^{\circ} \pm \text{Amplitude}$ T. Bg. = 90 - 10.9 = 079.1

E. To Find Variation (1990):

Var. $_{1990} =$ Var. $_{1982} - (3x8) = 3^{\circ}.4 E - 0^{\circ}.4 = 3^{\circ}.0 E$

F. To find errors & deviation

Compass		Gyro		
T. Bg.	079.1	T. Bg.	079.1	
C. g.	070.0	G. Bg.	080.0	
C. Error	9.1 E	G. Error	0.9 High	
Var.	3.0 E			
Dev.	6.1 E			

2 (TUES., WED., THURS.)					
Lat.	Twi Nout.	light Civi	Sunrise	Þ₀	
0	h n	h m	• -		Г
N 72	NV .	02 35	04 04	22 35	L
N 70	10	03 02	04 17	21 51	L
68	01 36	03 23	04 28	21 23	Ŀ.
66	02 13	03 39	04 37	21 01	
64	02 38	03 51	04 44	20 45	L:
62	02 58	04 02	04 51	20 31	L:
60	03 13	04 11	04 56	20 19	11
N 58	03 26	04 19	05 01	20 09	Ŀ
56	03 37	04 26	05 06	20 00	E
54	03 46	04 32	05 09	19 53	
52	03 54	04 38	05 13	19 46	
50	04 02	04 43	05 16	19 39	
45	04 16	04 53	05 23	19 26	11
N 40	04 28	05 01	05 29	19 15	Ŀ
35	04 37	05 08	05 34	19 06	E.
30	04 45	05 14	05 38	18 58	L.
20	04 57	05 23	05 46	18 44	
N 10	05 06	05 31	05 52	18 32	
0	05 13	05 37	05 58	18 21	
S 10	05 18	05 42	06 04	18 09	
20	05 22	05 47	06 10	17 58	13
30	05 25	05 52	06 16	17 44	13
35	05 25	05 55	06 20	17 36	
40	05 26	- +5 -50	06 25	17 27	
45	05 20		06 30	17 17	
S 50	05 26	06 03	06 36	17 05	1
52	05 25	06 04	06 38	16 59	E
54	05 25	06 06	06 41	16 53	

Proceed as follows to apply Polaris method:

- 1. Get the compass bearing of the Pole Star. (C. Bg.)
- 2. Record the time of compass bearing (G.M.T.)
- 3. Extract the **D.R. position** from the chart. (DR Lat. & DR Long.)
- 4. Using G.M.T.; Extract G.H.A. γ from Nautical Almanac Tables.
- 5. Add DR Long. To G.H.A. γ to obtain L.H.A. γ .
- 6. By the knowledge of L.H.A. γ & DR. Lat. Extract (T. Bg.) from Pole Star Tables (*In Nautical Almanac Tables*).
- 7. Apply the formula C. Error = T. Bg. \sim C. Bg. To obtain the compass error.

The previous steps are shown in the following flow chart:

Solved Example (4)

During the morning twilight of November 13th, 1990, Ship was in D.R. position (28° 04`.0 N; 170° 20`.0 E). The pole star (*Polaris*) was seen very clear.

It was a chance to check the errors of the compasses.

- The following information was recorded: •
 - Ch. Time 6h 05m 40s
 - Ch. Error 5m 12s slow •
 - Variation (1986) 2°.5 W (increasing 3' annually) •
 - Compass Bearing 003°.0 •
 - Gyro Bearing 358°.0

Calculate the error of each compass and the deviation. Answer:

A. To find correct G.M.T.

L.M.T.	0544 Nov 13 th
Lat. Corr. \underline{n} (+)	11
L.M.T.	0555 Nov 13 th
\pm Long.(W/E) (-)	1121
G.D.	1834 Nov 12 th
Ch. Time	06 05 40
Ch Error	+ 5 12

Ch. Error	+	С	12	
G.M.T.	18	10	52 Nov	12 th

B. To extract L.H.A. y

G.H.A. γ	321 36.3
Incr.	02 43.4
G.H.A. γ	324 19.7
\pm Long.(E/W)	170 20.0
(+)	
L.H.A. y	134 39.7

C. To extract True Bearing:

Regarding POLARIS TABLES in (NAUTICAL ALMANAC) \rightarrow T. Bg. = 359.1

D. To calculate variation 1990

- Var. $_{1990} =$ Var. $_{1986} + (3^{x}4) = 2^{\circ}.5 W + 0^{\circ}.2 = 2^{\circ}.7 W$
- E. To calculate errors & deviation

Co	ompass	G	Gyro				
T. Bg.	359.1	T. Bg.	359.1				
C. Bg.	363.0	G. Bg.	358.0				
C. Error	3.9 W	G. Error	1.1 Low				
Var.	2.7 W						
Dev.	1.2 W						

г		-0-0						0	
1	190°- 199°	180° 189°	170 179°	160° 169°	150°- 159°	140°-	130° 139°	120	ARIES
Γ	a	<i>a</i> ₀	ao	ao	ao	a	a	ao	
ĩ	1 40.9	1 36-8	1 31-6	1 25.4	1 18·5	1 10.9	1 02.9	o 54·8	ő
	41.5	37.3	32.5	26·I	, 19·2	11.6	03.7	55.6	I
	41.2	37.7	32.8	26.8	19.9	12.4	04.2	56.4	2
Ł	41.8	38.2	33.3	27.4	20.6	13.5	05.3	57.2	3
1	42-1	38-6	33.8	28.0	21.3	14.0	06.1	58.0	4

	July Aug. Sept.	0.7 .5 .3	0.7 .5 .4	0.8 .6 .4	0·8 ·7 ·5	0-9 -7 -5	0·9 -8 -6	1.0 0.8 .7	1.0 0.9 .7	
_	Oct. Nov. Dec.	0·2 ·2 0·3	0·3 ·2 0·2	0·3 ·2 0·2	0·3 ·2 0·2	0.4 .2 0.2	0.4 .2 0.2	0·5 ·3 0·2	0·5 ·3 0·2	
_	Lat.				AZIMUTH					
	° 20	359·2 359·2	359-2 359-2	359·3 359·2	359 [.] 3 359 [.] 3	359 [.] 4 359 [.] 4	359·5 359·5	359·6 359·6	359 ^{.7} 359 ^{.7}	3:
	- 40 50	359.0	359.0	359·1	359·1 359·0	359·2 359·1	359·3	359·5 359·4	359 ^{.7} 359 ^{.6}	3:
	55 60	358.4	358.5	358.6	358.7	358.8	359.0	359.3	359.5	3